我在根据第i和第j个索引的总和是偶数还是奇数来改变numpy ndarray时测试Cython性能。与Python相比,Cython速度仅提高了80%,这在速度上有点平庸。我此刻已经没想完了。有什么建议?
@Python:
def even_odd_function(matrix):
dim = matrix.shape[1]
for i in range(dim):
for j in range(dim):
if (i + j) % 2 == 0:
matrix[i, j] = matrix[i, j] ** 2
else:
matrix[i, j] = matrix[i, j] * -1
return matrix
@Cython:
%%cython
import numpy as np
cimport numpy as np
cimport cython
DTYPE = np.int
ctypedef np.int DTYPE_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def even_odd_function7(np.ndarray matrix):
cdef int dim = matrix.shape[1]
cdef int i
cdef int j
for i in range(dim):
for j in range(dim):
if (i + j) % 2 == 0:
matrix[i, j] = matrix[i, j] * matrix[i, j]
else:
matrix[i, j] = matrix[i, j] * -1
return matrix
答案 0 :(得分:4)
您需要为主要加速注释数组的类型。
import numpy as np
cimport numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def even_odd_function8(np.ndarray[np.float64_t, ndim=2] matrix):
cdef int dim = matrix.shape[1]
cdef int i
cdef int j
for i in range(dim):
for j in range(dim):
if (i + j) % 2 == 0:
matrix[i, j] = matrix[i, j] * matrix[i, j]
else:
matrix[i, j] = matrix[i, j] * -1
return matrix
In [20]: arr = np.random.randn(1000, 1000)
In [21]: %timeit even_odd_function(arr)
1 loop, best of 3: 636 ms per loop
In [22]: %timeit even_odd_function7(arr)
1 loop, best of 3: 480 ms per loop
In [24]: %timeit even_odd_function8(arr)
1000 loops, best of 3: 1.61 ms per loop
很大程度上是一种风格,但我更喜欢新的类型化的memoryview语法,它会做同样的事情。
def even_odd_function(np.float64_t[:,:] matrix)