即使我使用相同的数据集,我对训练的分类很高,但验证分类很低。仅在使用批量规范化时才会出现此问题。我是否正确实施了它?
使用批量标准化的代码:
train_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
directory = '../ImageFilter/Images/',
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
model = Sequential()
model.add(Convolution2D(16,
kernel_size=(3, 3),
strides=(2,2),
activation='relu',
input_shape=(img_rows, img_cols, 3)))
model.add(BatchNormalization())
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics = ['accuracy'])
epochs = 100
patience = 6
n_images = 91
file_path = 'imageFilterCNN.hdf5'
checkpointer = ModelCheckpoint(file_path, monitor='val_acc', verbose=0, save_best_only=True)
earlystop = EarlyStopping(monitor='val_acc', patience=patience, verbose=0, mode='auto')
tboard = TensorBoard('./logs')
model.fit_generator(
train_generator,
steps_per_epoch=n_images// batch_size,
epochs=epochs,
callbacks=[checkpointer, earlystop, tboard],
validation_data=train_generator,
validation_steps=n_images// batch_size)
输出: Epoch 15/100 11/11 [==============================] - 2s - 损失:0.0092 - acc:1.0000 - val_loss:3.0321 - val_acc:0.5568
答案 0 :(得分:0)
您正在第一个(输入)图层上应用批量标准化,这很可能是一个错误。你为什么要这样做?您的输入是图像,您非常清楚如何规范您的输入 - 实际上这就是您在第一行中所做的事情。再次应用标准化是没有意义的。
批量标准化应用于隐藏层,以便数据不会变得太大或太小。没有简单,通用的方法,因此Sergey Ioffe and Christian Szegedy引入了这个特殊层。