我有一个数据框,如此,
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': [0, 0.5, 0.2],
'b': [1,1,0.3]})
print (df)
a b
0 0.0 1.0
1 0.5 1.0
2 0.2 0.3
我想生成一个看起来像
的系列pd.Series ([np.arange ( start = 0, stop = 1, step = 0.1),
np.arange ( start = 0.5, stop = 1, step = 0.1),
np.arange ( start = 0.2, stop = 0.3, step = 0.1)])
0 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, ...
1 [0.5, 0.6, 0.7, 0.8, 0.9]
2 [0.2]
dtype: object
我试图用lambda函数执行此操作并收到错误,如此
foo = lambda x: np.arange(start = x.a, stop = x.b, step = 0.1)
print (df.apply(foo, axis =1))
ValueError: Shape of passed values is (3, 10), indices imply (3, 2)
我不确定这意味着什么。有没有更好/更正确的方法呢?
答案 0 :(得分:3)
将itertuples
与Series
构造函数一起使用:
s = pd.Series([np.arange(x.a, x.b, .1) for x in df.itertuples()], index=df.index)
print (s)
0 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, ...
1 [0.5, 0.6, 0.7, 0.8, 0.9]
2 [0.2]
dtype: object
s = pd.Series([np.arange(x.a, x.b, .1) for i, x in df.iterrows()], index=df.index)
print (s)
0 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, ...
1 [0.5, 0.6, 0.7, 0.8, 0.9]
2 [0.2]
dtype: object
应用仅适用于转换为tuple
:
foo = lambda x: tuple(np.arange(start = x.a, stop = x.b, step = 0.1))
print (df.apply(foo, axis = 1))
0 (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, ...
1 (0.5, 0.6, 0.7, 0.8, 0.9)
2 (0.2,)
dtype: object
答案 1 :(得分:2)
我使用理解
pd.Series([np.arange(a, b, .1) for a, b in zip(df.a, df.b)], df.index)
0 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, ...
1 [0.5, 0.6, 0.7, 0.8, 0.9]
2 [0.2]
dtype: object