我创建了一个我试图在视频数据集上使用的CNN模拟。 我将测试数据设置为所有帧上的所有单个图像,用于正例,0表示负例。我以为这会很快学会。但它根本不动。 使用当前版本的Keras& Windows 10 64bit上的Tensorflow。
第一个问题,我的逻辑错了吗?我是否希望这些测试数据的学习能够快速达到高精度?
我的模型或参数有问题吗?我一直在尝试一些变化,但仍然遇到同样的问题。
样本量(56)是否太小?
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1a (Conv3D) (None, 19, 160, 214, 32) 2624
_________________________________________________________________
conv1b (Conv3D) (None, 19, 160, 214, 32) 27680
_________________________________________________________________
pool1 (MaxPooling3D) (None, 10, 78, 105, 32) 0
_________________________________________________________________
conv2a (Conv3D) (None, 10, 78, 105, 128) 110720
_________________________________________________________________
conv2b (Conv3D) (None, 10, 78, 105, 128) 442496
_________________________________________________________________
pool2 (MaxPooling3D) (None, 5, 37, 51, 128) 0
_________________________________________________________________
conv3a (Conv3D) (None, 5, 37, 51, 256) 884992
_________________________________________________________________
conv3b (Conv3D) (None, 5, 37, 51, 256) 1769728
_________________________________________________________________
pool3 (MaxPooling3D) (None, 3, 17, 24, 256) 0
_________________________________________________________________
conv4a (Conv3D) (None, 3, 17, 24, 512) 3539456
_________________________________________________________________
conv4b (Conv3D) (None, 3, 17, 24, 512) 7078400
_________________________________________________________________
pool4 (MaxPooling3D) (None, 2, 7, 10, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 71680) 0
_________________________________________________________________
den0 (Dense) (None, 512) 36700672
_________________________________________________________________
den1 (Dense) (None, 1) 513
=================================================================
Total params: 50,557,281
Trainable params: 36,701,185
Non-trainable params: 13,856,096
_________________________________________________________________
None
compiled
Train on 50 samples, validate on 6 samples
Epoch 1/50
50/50 [==============================] - 20s - loss: 0.5000 - acc: 0.5000 - val_loss: 0.5000 - val_acc: 0.5000
Epoch 2/50
50/50 [==============================] - 16s - loss: 0.5000 - acc: 0.5000 - val_loss: 0.5000 - val_acc: 0.5000
Epoch 3/50
50/50 [==============================] - 16s - loss: 0.5000 - acc: 0.5000 - val_loss: 0.5000 - val_acc: 0.5000
Epoch 4/50
45/50 [==========================>...] - ETA: 1s - loss: 0.5111 - acc: 0.4889
Epoch 00003: reducing learning rate to 0.00020000000949949026.
50/50 [==============================] - 16s - loss: 0.5000 - acc: 0.5000 - val_loss: 0.5000 - val_acc: 0.5000
Epoch 5/50
50/50 [==============================] - 16s - loss: 0.5000 - acc: 0.5000 - val_loss: 0.5000 - val_acc: 0.5000
Epoch 6/50
45/50 [==========================>...] - ETA: 1s - loss: 0.5111 - acc: 0.4889
Epoch 00005: reducing learning rate to 4.0000001899898055e-05.
50/50 [==============================] - 16s - loss: 0.5000 - acc: 0.5000 - val_loss: 0.5000 - val_acc: 0.5000
Epoch 7/50
50/50 [==============================] - 16s - loss: 0.5000 - acc: 0.5000 - val_loss: 0.5000 - val_acc: 0.5000
Epoch 8/50
45/50 [==========================>...] - ETA: 1s - loss: 0.4889 - acc: 0.5111
Epoch 00007: reducing learning rate to 8.000000525498762e-06.
50/50 [==============================] - 16s - loss: 0.5000 - acc: 0.5000 - val_loss: 0.5000 - val_acc: 0.5000
Epoch 9/50
50/50 [==============================] - 16s - loss: 0.5000 - acc: 0.5000 - val_loss: 0.5000 - val_acc: 0.5000
Epoch 00008: early stopping
56/56 [==============================] - 12s
['loss', 'acc']: [0.50000001516725334, 0.5000000127724239]
像往常一样,感谢任何帮助。
添加了输出......
https://
答案 0 :(得分:0)
您的图层设置为trainable=False
(除了最后一个密集图层)。因此你的CNN无法学习。此外,您无法仅对单个样本进行训练。
如果您在GPU切换到CPU或AWS时遇到性能问题或缩小图像大小。