具有迭代器的多处理池

时间:2017-06-12 11:45:34

标签: python multiprocessing

我想使用带有迭代器的多处理池,以便在一个线程中执行一个函数,将迭代器分解为N个元素,直到迭代器完成。

import arcpy
from multiprocessing import Pool

def insert(rows):
    with arcpy.da.InsertCursor("c:\temp2.gdb\test" fields=["*"]) as i_cursor:
        #i_cursor is an iterator
        for row in rows:
            i_cursor.insertRow(row)

input_rows = []
count = 0
pool = Pool(4)
with arcpy.da.SearchCursor("c:\temp.gdb\test", fields=["*"]) as s_cursor:
    #s_cursor is an iterator
    for row in s_cursor:
        if (count < 100):
            input_rows.append(row)
            count += 1
        else:
            #send 100 rows to the insert function in a new thread
            pool.apply_async(insert, input_rows)
            #reset count and input_rows
            count = 1
            input_rows = [row]


pool.join()
pool.close()

我的问题是,这个脚本是正确的方法吗?还有更好的方法吗?

该脚本可能有问题,因为我在pool.join()

处得到以下AssertionError
Traceback (most recent call last):
  File "G:\Maxime\truncate_append_pool.py", line 50, in <module>
    pool.join()
  File "C:\App\Python27\ArcGIS10.3\lib\multiprocessing\pool.py", line 460, in join
    assert self._state in (CLOSE, TERMINATE)
AssertionError

1 个答案:

答案 0 :(得分:6)

如果我必须猜测代码的主要错误,我会说你将input_rows传递给你的流程函数insert() - multiprocessing.Pool.apply_async()的工作方式是解压缩传递给它的参数,因此你的insert()函数实际上转发100个参数而不是一个带有100元素列表的参数。在您的过程功能甚至有机会启动之前,这会立即导致错误。如果你改变对pool.apply_async(insert, [input_rows])的调用,它可能会开始工作......你也会破坏迭代器的目的,你可能只是将整个输入迭代器转换成一个列表并将100的切片提供给{ {3}}并完成它。

但你问是否有“更好”的方法。虽然“更好”是一个相对类别,但在理想的世界中,multiprocessing.Pool.map()附带了一个方便的multiprocessing.Pool(和imap())方法,旨在使用迭代并将它们分散到选定的池中懒惰的方式(因此在处理之前没有遍历整个迭代器),所以你需要构建的是你的迭代器切片并将其传递给它进行处理,即:

import arcpy
import itertools
import multiprocessing

# a utility function to get us a slice of an iterator, as an iterator
# when working with iterators maximum lazyness is preferred 
def iterator_slice(iterator, length):
    iterator = iter(iterator)
    while True:
        res = tuple(itertools.islice(iterator, length))
        if not res:
            break
        yield res

def insert(rows):
    with arcpy.da.InsertCursor("c:\temp2.gdb\test" fields=["*"]) as i_cursor:
        for row in rows:
            i_cursor.insertRow(row)

if __name__ == "__main__":  # guard for multi-platform use
    with arcpy.da.SearchCursor("c:\temp.gdb\test", fields=["*"]) as s_cursor:
        pool = multiprocessing.Pool(processes=4)  # lets use 4 workers
        for result in pool.imap_unordered(insert, iterator_slice(s_cursor, 100)):
            pass  # do whatever you want with your result (return from your process function)
        pool.close()  # all done, close cleanly

(顺便说一句。您的代码不会为您提供不是100的倍数的所有s_cursor尺寸的最后一个切片。

但是......如果它真的像宣传的那样工作会很棒。虽然这些年来已经修复了很多,但是imap_unordered()在生成自己的迭代器时仍会使用迭代器的大样本(远远大于实际池进程的数量),因此,如果这是一个问题,你将不得不自己沮丧,并且你走在正确的轨道上 - apply_async()是你要控制如何喂养你的游泳池的方式,你只需要确保您正确地提供您的游泳池:

if __name__ == "__main__":
    with arcpy.da.SearchCursor("c:\temp.gdb\test", fields=["*"]) as s_cursor:
        pool = multiprocessing.Pool(processes=4)  # lets use 4 workers
        cursor_iterator = iterator_slice(s_cursor, 100)  # slicer from above, for convinience
        queue = []  # a queue for our current worker async results, a deque would be faster
        while cursor_iterator or queue:  # while we have anything to do...
            try:
                # add our next slice to the pool:
                queue.append(pool.apply_async(insert, [next(cursor_iterator)])) 
            except (StopIteration, TypeError):  # no more data, clear out the slice iterator
                cursor_iterator = None
            # wait for a free worker or until all remaining finish
            while queue and (len(queue) >= pool._processes or not cursor_iterator):
                process = queue.pop(0)  # grab a process response from the top
                process.wait(0.1)  # let it breathe a little, 100ms should be enough
                if not process.ready():  # a sub-process has not finished execution
                    queue.append(process)  # add it back to the queue
                else:
                    # you can use process.get() to get the result if needed
                    pass
        pool.close()

现在只有在需要接下来的100个结果时才会调用s_cursor迭代器(当你的insert()进程函数完全退出时)。

更新 - 如果需要捕获的结果,以前发布的代码在关闭队列时有一个错误,这个应该很好地完成工作。我们可以使用一些模拟函数轻松测试它:

import random
import time

# just an example generator to prove lazy access by printing when it generates
def get_counter(limit=100):
    for i in range(limit):
        if not i % 3:  # print every third generation to reduce verbosity
            print("Generated: {}".format(i))
        yield i

# our process function, just prints what's passed to it and waits for 1-6 seconds
def test_process(values):
    time_to_wait = 1 + random.random() * 5
    print("Processing: {}, waiting: {:0.2f} seconds".format(values, time_to_wait))
    time.sleep(time_to_wait)
    print("Processed: {}".format(values))

现在我们可以将它们交织在一起:

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=2)  # lets use just 2 workers
    count = get_counter(30)  # get our counter iterator set to iterate from 0-29
    count_iterator = iterator_slice(count, 7)  # we'll process them in chunks of 7
    queue = []  # a queue for our current worker async results, a deque would be faster
    while count_iterator or queue:
        try:
            # add our next slice to the pool:
            queue.append(pool.apply_async(test_process, [next(count_iterator)]))
        except (StopIteration, TypeError):  # no more data, clear out the slice iterator
            count_iterator = None
        # wait for a free worker or until all remaining workers finish
        while queue and (len(queue) >= pool._processes or not count_iterator):
            process = queue.pop(0)  # grab a process response from the top
            process.wait(0.1)  # let it breathe a little, 100ms should be enough
            if not process.ready():  # a sub-process has not finished execution
                queue.append(process)  # add it back to the queue
            else:
                # you can use process.get() to get the result if needed
                pass
    pool.close()

结果是(当然,它会因系统而异):

Generated: 0
Generated: 3
Generated: 6
Generated: 9
Generated: 12
Processing: (0, 1, 2, 3, 4, 5, 6), waiting: 3.32 seconds
Processing: (7, 8, 9, 10, 11, 12, 13), waiting: 2.37 seconds
Processed: (7, 8, 9, 10, 11, 12, 13)
Generated: 15
Generated: 18
Processing: (14, 15, 16, 17, 18, 19, 20), waiting: 1.85 seconds
Processed: (0, 1, 2, 3, 4, 5, 6)
Generated: 21
Generated: 24
Generated: 27
Processing: (21, 22, 23, 24, 25, 26, 27), waiting: 2.55 seconds
Processed: (14, 15, 16, 17, 18, 19, 20)
Processing: (28, 29), waiting: 3.14 seconds
Processed: (21, 22, 23, 24, 25, 26, 27)
Processed: (28, 29)

证明我们的生成器/迭代器仅在池中有空闲插槽时才用于收集数据,以确保最小的内存使用量(和/或如果迭代器最终执行此操作而导致I / O冲击)。你不会比这更精简。你可以获得的唯一额外的,虽然是微不足道的加速是减少等待时间(但是你的主要进程将占用更多的资源)并增加被锁定的允许queue大小(以内存为代价)上面代码中的进程数 - 如果使用while queue and (len(queue) >= pool._processes + 3 or not count_iterator):,它将加载3个迭代器切片,确保在进程结束并且池中的插槽释放时的情况下延迟较短。