我正在尝试使用Process对象在python中使用worker Pool。每个工作者(一个进程)进行一些初始化(花费非常重要的时间),传递一系列作业(理想情况下使用map()
),并返回一些东西。除此之外不需要任何沟通。但是,我似乎无法弄清楚如何使用map()来使用我的worker compute()
函数。
from multiprocessing import Pool, Process
class Worker(Process):
def __init__(self):
print 'Worker started'
# do some initialization here
super(Worker, self).__init__()
def compute(self, data):
print 'Computing things!'
return data * data
if __name__ == '__main__':
# This works fine
worker = Worker()
print worker.compute(3)
# workers get initialized fine
pool = Pool(processes = 4,
initializer = Worker)
data = range(10)
# How to use my worker pool?
result = pool.map(compute, data)
作业队列是否可以排队,或者我可以使用map()
吗?
答案 0 :(得分:50)
我建议您使用队列。
class Worker(Process):
def __init__(self, queue):
super(Worker, self).__init__()
self.queue = queue
def run(self):
print('Worker started')
# do some initialization here
print('Computing things!')
for data in iter(self.queue.get, None):
# Use data
现在你可以开始一堆这些,所有这些都是从一个队列中获得工作
request_queue = Queue()
for i in range(4):
Worker(request_queue).start()
for data in the_real_source:
request_queue.put(data)
# Sentinel objects to allow clean shutdown: 1 per worker.
for i in range(4):
request_queue.put(None)
这种事情应该允许你分摊多个工人的昂贵的启动成本。
答案 1 :(得分:5)
initializer
期望一个可以执行启动的任意调用,例如,它可以设置一些全局变量,而不是Process
子类; map
接受任意迭代:
#!/usr/bin/env python
import multiprocessing as mp
def init(val):
print('do some initialization here')
def compute(data):
print('Computing things!')
return data * data
def produce_data():
yield -100
for i in range(10):
yield i
yield 100
if __name__=="__main__":
p = mp.Pool(initializer=init, initargs=('arg',))
print(p.map(compute, produce_data()))
答案 2 :(得分:1)
从python 3.3开始,您可以使用starmap,也可以使用非常简单的语法使用多个参数并取回结果:
import multiprocessing
nb_cores = multiprocessing.cpu_count()
def caps(nb, letter):
print('Exec nb:', nb)
return letter.upper()
if __name__ == '__main__':
multiprocessing.freeze_support() # for Windows, also requires to be in the statement: if __name__ == '__main__'
input_data = ['a','b','c','d','e','f','g','h']
input_order = [1,2,3,4,5,6,7,8,9]
with multiprocessing.Pool(processes=nb_cores) as pool: # auto closing workers
results = pool.starmap(caps, zip(input_order, input_data))
print(results)