假设我有一个数据集,其中行是人们所使用的类:
attendance <- data.frame(id = c(1, 1, 1, 2, 2),
class = c("Math", "English", "Math", "Reading", "Math"))
I.e.,
id class
1 1 "Math"
2 1 "English"
3 1 "Math"
4 2 "Reading"
5 2 "Math"
我想创建一个新的数据集,其中行是id,变量是类名,如下所示:
class.names <- names(table(attendance$class))
attedance2 <- matrix(nrow=length(table(attendance$id)),
ncol=length(class.names))
colnames(attedance2) <- class.names
attedance2 <- as.data.frame(attedance2)
attedance2$id <- unique(attendance$id)
I.e.,
English Math Reading id
1 NA NA NA 1
2 NA NA NA 2
我想填写NAs是否该特定id是否接受了该类。它可以是Yes / No,1/0,或类的计数
I.e.,
English Math Reading id
1 "Yes" "Yes" "No" 1
2 "No" "Yes" "Yes" 2
我熟悉dplyr,所以如果在解决方案中使用它而不是必需的话,对我来说会更容易。谢谢您的帮助!
答案 0 :(得分:4)
使用:
library(reshape2)
attendance$val <- 'yes'
dcast(unique(attendance), id ~ class, value.var = 'val', fill = 'no')
给出:
id English Math Reading 1 1 yes yes no 2 2 no yes yes
使用data.table
的类似方法:
library(data.table)
dcast(unique(setDT(attendance))[,val:='yes'], id ~ class, value.var = 'val', fill = 'no')
或dplyr
/ tidyr
:
library(dplyr)
library(tidyr)
attendance %>%
distinct() %>%
mutate(var = 'yes') %>%
spread(class, var, fill = 'no')
另一个更复杂的选项可能首先重新整形,然后用yes
和no
替换计数(有关dcast
的默认聚合选项,请参阅here for an explanation):
att2 <- dcast(attendance, id ~ class, value.var = 'class')
给出:
id English Math Reading 1 1 1 2 0 2 2 0 1 1
现在您可以用以下内容替换计数:
# create index which counts are above zero
idx <- att2[,-1] > 0
# replace the non-zero values with 'yes'
att2[,-1][idx] <- 'yes'
# replace the zero values with 'no'
att2[,-1][!idx] <- 'no'
最终给出了:
> att2 id English Math Reading 1 1 yes yes no 2 2 no yes yes
答案 1 :(得分:0)
我们可以使用base R
attendance$val <- "yes"
d1 <- reshape(attendance, idvar = 'id', direction = 'wide', timevar = 'class')
d1[is.na(d1)] <- "no"
names(d1) <- sub("val\\.", '', names(d1))
d1
# id Math English Reading
#1 1 yes yes no
#4 2 yes no yes
或xtabs
xtabs(val ~id + class, transform(unique(attendance), val = 1))
# class
# id English Math Reading
# 1 1 1 0
# 2 0 1 1
注意:二进制文件可以很容易地转换为“是”,“没有”,但最好是1/0或TRUE/FALSE