我刚注意到zeros
的{{1}}函数有一个奇怪的行为:
numpy
另一方面,%timeit np.zeros((1000, 1000))
1.06 ms ± 29.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.zeros((5000, 5000))
4 µs ± 66 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
似乎有正常的行为。
有人知道为什么用ones
函数初始化一个小的numpy数组需要比大数组更多的时间吗?
(Python 3.5,numpy 1.11)
答案 0 :(得分:12)
这看起来像calloc
达到一个阈值,它会向操作系统请求内存归零,并且不需要手动初始化它。浏览源代码,numpy.zeros
最终delegates to calloc
获取归零内存块,如果与numpy.empty
进行比较,则不执行初始化:
In [15]: %timeit np.zeros((5000, 5000))
The slowest run took 12.65 times longer than the fastest. This could mean that a
n intermediate result is being cached.
100000 loops, best of 3: 10 µs per loop
In [16]: %timeit np.empty((5000, 5000))
The slowest run took 5.05 times longer than the fastest. This could mean that an
intermediate result is being cached.
100000 loops, best of 3: 10.3 µs per loop
您可以看到np.zeros
没有5000x5000阵列的初始化开销。
事实上,操作系统甚至不是真的"分配该内存直到您尝试访问它。数TB的数组请求在没有太字节的机器上成功:
In [23]: x = np.zeros(2**40) # No MemoryError!