rpy2的问题,rpart正确地将数据从python传递到r

时间:2010-12-14 00:20:38

标签: python r rpy2

我正在尝试使用Python 2.6.5和R 10.0在RPY2上运行rpart。

我在python中创建一个数据框并传递它,但是我收到一个错误说明:

Error in function (x)  : binary operation on non-conformable arrays
Traceback (most recent call last):
  File "partitioningSANDBOX.py", line 86, in <module>
    model=r.rpart(**rpart_params)
  File "build/bdist.macosx-10.3-fat/egg/rpy2/robjects/functions.py", line 83, in __call__
  File "build/bdist.macosx-10.3-fat/egg/rpy2/robjects/functions.py", line 35, in __call__
rpy2.rinterface.RRuntimeError: Error in function (x)  : binary operation on non-conformable arrays

任何人都可以帮我确定我做错了什么来抛出这个错误吗?

我的代码的相关部分是:

import numpy as np
import rpy2
import rpy2.robjects as rob
import rpy2.robjects.numpy2ri


#Fire up the interface to R
r = rob.r
r.library("rpart")

datadict = dict(zip(['responsev','predictorv'],[cLogEC,csplitData]))
Rdata = r['data.frame'](**datadict)
Rformula = r['as.formula']('responsev ~.')
#Generate an RPART model in R.
Rpcontrol = r['rpart.control'](minsplit=10, xval=10)
rpart_params = {'formula' : Rformula, \
       'data' : Rdata,
       'control' : Rpcontrol}
model=r.rpart(**rpart_params)

两个变量cLogEC和csplitData是float类型的numpy数组。

此外,我的数据框如下所示:

In [2]: print Rdata
------> print(Rdata)
   responsev predictorv
1  0.6020600        312
2  0.3010300        300
3  0.4771213        303
4  0.4771213        249
5  0.9242793        239
6  1.1986571        297
7  0.7075702        287
8  1.8115750        270
9  0.6020600        296
10 1.3856063        248
11 0.6127839        295
12 0.3010300        283
13 1.1931246        345
14 0.3010300        270
15 0.3010300        251
16 0.3010300        246
17 0.3010300        273
18 0.7075702        252
19 0.4771213        252
20 0.9294189        223
21 0.6127839        252
22 0.7075702        267
23 0.9294189        252
24 0.3010300        378
25 0.3010300        282

,公式如下:

In [3]: print Rformula
------> print(Rformula)
responsev ~ .

1 个答案:

答案 0 :(得分:5)

问题与rpart中的R特殊代码有关(确切地说,下面的块,特别是最后一行:

m <- match.call(expand.dots = FALSE)
m$model <- m$method <- m$control <- NULL
m$x <- m$y <- m$parms <- m$... <- NULL
m$cost <- NULL
m$na.action <- na.action
m[[1L]] <- as.name("model.frame")
m <- eval(m, parent.frame())

)。

解决这个问题的一种方法是避免输入该代码块(见下文),或者可能是从Python构造嵌套评估(以便parent.frame()行为)。这并不像人们希望的那么简单,但我可能会有时间让它在将来更容易。

from rpy2.robjects import DataFrame, Formula
import rpy2.robjects.numpy2ri as npr
import numpy as np
from rpy2.robjects.packages import importr
rpart = importr('rpart')
stats = importr('stats')

cLogEC = np.random.uniform(size=10)
csplitData = np.array(range(10), 'i')

dataf = DataFrame({'responsev': cLogEC,
                   'predictorv': csplitData})
formula = Formula('responsev ~.')
rpart.rpart(formula=formula, data=dataf, 
            control=rpart.rpart_control(minsplit = 10, xval = 10),
            model = stats.model_frame(formula, data=dataf))