我有一个数据帧和两个Pandas系列ac和cc,我想将这两个系列作为带有循环的列附加。但问题是我的数据帧有时间索引,系列为整数
A='a'
cc = pd.Series(np.zeros(len(A)*20))
ac = pd.Series(np.random.randn(10))
index = pd.date_range(start=pd.datetime(2017, 1,1), end=pd.datetime(2017, 1, 2), freq='1h')
df = pd.DataFrame(index=index)
我已经回答了我的问题,但没有循环here
现在,我需要添加一个循环,但我在键中出错:
az = [cc, ac]
for i in az:
df.join(
pd.concat(
[pd.Series(s.values, index[:len(s)]) for s in [i]],
axis=1, keys=[i]
)
)
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), ,a.any() or a.all().
我尝试使用keys = [i.all ()]
,我有正确的答案,除了我没有列名称,我有真假。
最终结果应该是这样的:
cc ac
2017-01-01 00:00:00 1 0.247043
2017-01-01 01:00:00 1 -0.324868
2017-01-01 02:00:00 1 -0.004868
2017-01-01 03:00:00 1 0.047043
2017-01-01 04:00:00 1 -0.447043
2017-01-01 05:00:00 NaN NaN
... ... ...
答案 0 :(得分:1)
创建一个元组列表,其中第一个元素是列名,第二个元素是系列本身。
az = [('cc', cc), ('ac', ac)]
for c, s in az:
df[c] = pd.Series(s.values, index[:len(s)])
cc ac
2017-01-01 00:00:00 0.0 2.062265
2017-01-01 01:00:00 0.0 -0.225066
2017-01-01 02:00:00 0.0 -1.698330
2017-01-01 03:00:00 0.0 -1.068081
2017-01-01 04:00:00 0.0 0.142956
2017-01-01 05:00:00 0.0 -1.244232
2017-01-01 06:00:00 0.0 -1.072311
2017-01-01 07:00:00 0.0 0.242069
2017-01-01 08:00:00 0.0 0.120093
2017-01-01 09:00:00 0.0 -0.335500
2017-01-01 10:00:00 0.0 NaN
2017-01-01 11:00:00 0.0 NaN
2017-01-01 12:00:00 0.0 NaN
2017-01-01 13:00:00 0.0 NaN
2017-01-01 14:00:00 0.0 NaN
2017-01-01 15:00:00 0.0 NaN
2017-01-01 16:00:00 0.0 NaN
2017-01-01 17:00:00 0.0 NaN
2017-01-01 18:00:00 0.0 NaN
2017-01-01 19:00:00 0.0 NaN
2017-01-01 20:00:00 NaN NaN
2017-01-01 21:00:00 NaN NaN
2017-01-01 22:00:00 NaN NaN
2017-01-01 23:00:00 NaN NaN
2017-01-02 00:00:00 NaN NaN