按列添加两个Pandas系列到数据框

时间:2017-06-03 00:36:16

标签: python pandas

我有一个数据帧和两个Pandas系列ac和cc,我想将这两个系列作为列添加。但问题是我的数据帧有时间索引,系列为整数

hReq.SetRequestHeader "Content-Type", "application/json"
hReq.setRequestHeader "Authorization", "Basic cHBzX2NyZWdJIYXAhjhjdjsfhjdshakjfdhakfhjk5c0AjMTZAY3JlZ"

我试试这个,但我有一个空的数据框

A='a'

cc  = pd.Series(np.zeros(len(A)*20))
ac  = pd.Series(np.random.randn(10))

最终结果应该是这样的:

index = pd.date_range(start=pd.datetime(2017, 1,1), end=pd.datetime(2017, 1, 2), freq='1h')

df = pd.DataFrame(index=index)

df = df.join(pd.concat([pd.DataFrame(cc).T] * len(df), ignore_index=True))
df = df.join(pd.concat([pd.DataFrame(ac).T] * len(df), ignore_index=True))

如果我们在最终结果中总是有NaN,那就没问题了。

编辑:

在@piRSquared的答案之后,我必须添加一个循环,但我的密钥出错了:

                    cc    ac   
2017-01-01 00:00:00   1    0.247043 
2017-01-01 01:00:00   1    -0.324868 
2017-01-01 02:00:00   1    -0.004868
2017-01-01 03:00:00   1    0.047043 
2017-01-01 04:00:00   1    -0.447043 
2017-01-01 05:00:00 NaN    NaN 
...                 ...    ...

1 个答案:

答案 0 :(得分:1)

df.join(
    pd.concat(
        [pd.Series(s.values, index[:len(s)]) for s in [cc, ac]],
        axis=1, keys=['cc', 'ac']
    )
)

                      cc        ac
2017-01-01 00:00:00  0.0 -0.319653
2017-01-01 01:00:00  0.0  0.630061
2017-01-01 02:00:00  0.0 -1.648402
2017-01-01 03:00:00  0.0 -1.141017
2017-01-01 04:00:00  0.0 -0.643353
2017-01-01 05:00:00  0.0  0.718771
2017-01-01 06:00:00  0.0  0.379173
2017-01-01 07:00:00  0.0  1.799804
2017-01-01 08:00:00  0.0  0.883260
2017-01-01 09:00:00  0.0  0.788289
2017-01-01 10:00:00  0.0       NaN
2017-01-01 11:00:00  0.0       NaN
2017-01-01 12:00:00  0.0       NaN
2017-01-01 13:00:00  0.0       NaN
2017-01-01 14:00:00  0.0       NaN
2017-01-01 15:00:00  0.0       NaN
2017-01-01 16:00:00  0.0       NaN
2017-01-01 17:00:00  0.0       NaN
2017-01-01 18:00:00  0.0       NaN
2017-01-01 19:00:00  0.0       NaN
2017-01-01 20:00:00  NaN       NaN
2017-01-01 21:00:00  NaN       NaN
2017-01-01 22:00:00  NaN       NaN
2017-01-01 23:00:00  NaN       NaN
2017-01-02 00:00:00  NaN       NaN