我有一个Dataframe(data
),其头部如下所示:
status datetime country amount city
601766 received 1.453916e+09 France 4.5 Paris
669244 received 1.454109e+09 Italy 6.9 Naples
我想预测status
给定datetime, country, amount
和city
由于status, country, city
是字符串,我对它们进行了一次热编码:
one_hot = pd.get_dummies(data['country'])
data = data.drop(item, axis=1) # Drop the column as it is now one_hot_encoded
data = data.join(one_hot)
然后我创建一个简单的LinearRegression模型并使其适合我的数据:
y_data = data['status']
classifier = LinearRegression(n_jobs = -1)
X_train, X_test, y_train, y_test = train_test_split(data, y_data, test_size=0.2)
columns = X_train.columns.tolist()
classifier.fit(X_train[columns], y_train)
但是我收到了以下错误:
无法将字符串转换为float:'received'
我觉得我在这里想念一些东西,我想对如何继续进行一些投入。 感谢您到目前为止阅读!
答案 0 :(得分:2)
考虑以下方法:
首先让我们对所有非数字列进行一次热编码:
In [220]: from sklearn.preprocessing import LabelEncoder
In [221]: x = df.select_dtypes(exclude=['number']) \
.apply(LabelEncoder().fit_transform) \
.join(df.select_dtypes(include=['number']))
In [228]: x
Out[228]:
status country city datetime amount
601766 0 0 1 1.453916e+09 4.5
669244 0 1 0 1.454109e+09 6.9
现在我们可以使用LinearRegression
分类器:
In [230]: classifier.fit(x.drop('status',1), x['status'])
Out[230]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
答案 1 :(得分:0)
要在scikit-learn项目中进行单热编码,您可能会发现使用scikit-learn-contrib项目category_encoders更加清晰:https://github.com/scikit-learn-contrib/categorical-encoding,其中包括许多常见的分类变量编码方法,包括一个 - 热。