所以,我有一个问题:
我在Android中做opencv,因为我手机拍摄的图像分辨率非常高,我想将图像调整为较小的图像,获取轮廓并处理图像,然后在原始图像上创建边界矩形。为此,我需要缩放该边界框,使其完全适合我的原始图像。我的代码与原始图像上的处理和绘图边界框非常吻合,但是,如何进行缩放?以下是代码段:
Mat &image = *(Mat *) matAddrRgba;
//over here I should resize image and do the processing with the resized one, and in the end, scale everything back so I can draw the bounding box to the original
Rect bounding_rect;
Mat thr(image.rows, image.cols, CV_8UC1);
cvtColor(image, thr, CV_BGR2GRAY); //Convert to gray
threshold(thr, thr, 150, 255, THRESH_BINARY + THRESH_OTSU); //Threshold the gray
vector<vector<Point> > contours; // Vector for storing contour
vector<Vec4i> hierarchy;
RotatedRect rect;
findContours(thr, contours, hierarchy, CV_RETR_CCOMP,
CV_CHAIN_APPROX_SIMPLE); // Find the contours in the image
sort(contours.begin(), contours.end(),
compareContourAreas); //Store the index of largest contour
bounding_rect = boundingRect(contours[0]);
rect = minAreaRect(contours[0]);
// matrices we'll use
Mat rot_mat, rotated;
// get angle and size from the bounding box
float angle = rect.angle;
Size rect_size = rect.size;
if (rect.angle < -45.) {
angle += 90.0;
swap(rect_size.width, rect_size.height);
}
rot_mat = getRotationMatrix2D(rect.center, angle, 1);
warpAffine(image, rotated, rot_mat, image.size(), INTER_CUBIC);
image = rotated;
cvtColor(image, thr, CV_BGR2GRAY); //Convert to gray
threshold(thr, thr, 150, 255, THRESH_BINARY + THRESH_OTSU); //Threshold the gray
findContours(thr, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
sort(contours.begin(), contours.end(), compareContourAreas);
bounding_rect = boundingRect(contours[0]);
image = Mat(image, bounding_rect);
答案 0 :(得分:2)
好的,我会从这开始:
Mat &img = (Mat ) matAddrRgba;
Mat image;
double thrA = 5;
resize(img, image, Size((int) (img.size().width / thrA), (int) (img.size().height / thrA)));
Rect bounding_rect;
Mat thr(image.rows, image.cols, CV_8UC1);
cvtColor(image, thr, CV_BGR2GRAY); //Convert to gray
threshold(thr, thr, 150, 255, THRESH_BINARY + THRESH_OTSU); //Threshold the gray
vector<vector<Point> > contours; // Vector for storing contour
vector<Vec4i> hierarchy;
RotatedRect rect;
findContours(thr, contours, hierarchy, CV_RETR_CCOMP,
CV_CHAIN_APPROX_SIMPLE); // Find the contours in the image
sort(contours.begin(), contours.end(),
compareContourAreas); //Store the index of largest contour
bounding_rect = boundingRect(contours[0]);
bounding_rect.width = (int) (bounding_rect.width * thrA);
bounding_rect.height = (int) (bounding_rect.height * thrA);
bounding_rect.x = (int) (bounding_rect.x * thrA);
bounding_rect.y = (int) (bounding_rect.y * thrA);
rectangle(img, bounding_rect, Scalar(0, 172, 236, 255), 3);
如您所见,您应该有一个比例,该比例应该与边界矩形的宽度,高度,x和y相乘。你可以从中找出其余部分。