我正在绘制一个带箭头的地图。这些箭头代表winddirections,平均风速(每个方向)和出现(每个方向)。
方向由箭头方向指示。箭头的长度表示该方向的平均风速。箭头的颜色表示在这样的方向上出现的风。
这一切都适用于以下脚本:
windData = pd.read_csv(src+'.txt'), sep='\t', names=['lat', 'lon', 'wind_dir_start', 'wind_dir_end', 'total_num_data_points','num_data_points', 'avg_windspeed']).dropna()
# plot map
m = Basemap(llcrnrlon=minLon, llcrnrlat=minLat, urcrnrlon=maxLon, urcrnrlat=maxLat, resolution='i')
Left, Bottom = m(minLon, minLat)
Right, Top = m(maxLon, maxLat)
# get x y
x, y = m(windData['lon'], windData['lat'])
# angles
angleStart = -windData['wind_start']+90
angleStart[angleStart<0] = np.radians(angleStart[angleStart<0]+360.)
angleEnd = -windData['wind_end']+90
angleEnd[angleEnd<0] = np.radians(angleEnd[angleEnd<0]+360.)
angle = angleStart + math.radians(binSize/2.)
xux = np.cos(angle) * windData['avg_windspeed']
yuy = np.sin(angle) * windData['avg_windspeed']
# occurence
occurence = (windData['num_data_points']/windData['total_num_data_points'])
xi = np.linspace(minLon, maxLon, 300)
yi = np.linspace(minLat, maxLat, 300)
# plotting
## xux and yuy are used negatively because they are measured as "coming from" and displayed as "going to"
# To make things more readable I left a threshold for the occurence out
# I usually plot x, y, xux, yuy and the colors as var[occurence>threshold]
Q = m.quiver(x, y, -xux, -yuy, scale=75, zorder=6, color=cm.jet, width=0.0003*Width, cmap=cm.jet)
qk = plt.quiverkey(Q, 0.5, 0.92, 3, r'$3 \frac{m}{s}$', labelpos='S', fontproperties={'weight': 'bold'})
m.scatter(x, y, c='k', s=20*np.ones(len(x)), zorder=10, vmin=4.5, vmax=39.)
此图显示了箭头,但现在我想添加一个颜色图,指示绘图旁边出现的百分比。我该怎么做?
答案 0 :(得分:1)
您希望彩条显示不同的风速吗?如果是这样,将plt.colorbar()
放在行Q = m.quiver(...)
和qk = ...
之间就足够了。
答案 1 :(得分:1)
行
常用导入,加上import matplotlib
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
伪造要绘制的数据(MCD的tx)
NP = 10
np.random.seed(1)
x = np.random.random(NP)
y = np.random.random(NP)
angle = 1.07+np.random.random(NP) # NE to NW
velocity = 1.50+np.random.random(NP)
o = np.random.random(NP)
occurrence = o/np.sum(o)
dx = np.cos(angle)*velocity
dy = np.sin(angle)*velocity
创建 mappable ,以便Matplotib没有理由抱怨&#34; RuntimeError:找不到用于创建颜色栏的mappable。&#34;
norm = matplotlib.colors.Normalize()
norm.autoscale(occurrence)
cm = matplotlib.cm.copper
sm = matplotlib.cm.ScalarMappable(cmap=cm, norm=norm)
sm.set_array([])
并绘制数据
plt.quiver(x, y, dx, dy, color=cm(norm(o)))
plt.colorbar(sm)
plt.show()
参考文献: