我最近开始使用R编程。这是我的数据集
WeekOfYear Production
1 202612
2 245633
3 299653
4 252612
5 299633
6 288993
7 254653
8 288612
9 277733
10 245633
我需要预测剩余的一周中的“生产”值
relation<-lm(Production~WeekOfYear,dataset)
predict(relation,data.frame(WeekOfYear=c(11)))
如何将第11周至第52周(年末)的预测值附加到同一数据集中,如下所示
WeekOfYear Production
1 202612
2 245633
3 299653
4 252612
5 299633
6 288993
7 254653
8 288612
9 277733
10 245633
11 predicted value
12 predicted value
等等
-OR-
WeekOfYear Production Regression
1 202612 fitted value
2 245633 fitted value
3 299653 fitted value
4 252612 fitted value
5 299633 fitted value
6 288993 fitted value
7 254653 fitted value
8 288612 fitted value
9 277733 fitted value
10 245633 fitted value
11 predicted value
12 predicted value
13 predicted value
14 predicted value
.
.
52 predicted value
答案 0 :(得分:2)
要附加您的值,您可以使用以下
test_data <- data.frame(WeekOfYear=11:52, Production = rep(0, 52-11+1))
test_data$Production <- predict(relation,test_data)
df = rbind(df, test_data)
我已使用df
数据框定义了
df = data.frame(WeekOfYear =
c(1,2,3,4,5,6,7,8,9,10),
Production = c(202612,245633,299653,252612,299633,288993,254653,288612, 277733,245633))
这会给你这种行为(情节拼凑得非常快)
我不确定您的数据是否符合线性行为,但您可能更了解您的数据......
答案 1 :(得分:2)
你可以这样做:
private void DGrdDatosImportar_Drop(object sender, RoutedEventArgs e)
{
...
ScrollViewer sv = GetChildOfType<ScrollViewer>(DGrdDatosImportar);
if (sv != null)
{
double horizontalOffset = sv.HorizontalOffset;
//...
}
}
private static T GetChildOfType<T>(DependencyObject depObj) where T : DependencyObject
{
if (depObj == null)
return null;
for (int i = 0; i < VisualTreeHelper.GetChildrenCount(depObj); i++)
{
var child = VisualTreeHelper.GetChild(depObj, i);
var result = (child as T) ?? GetChildOfType<T>(child);
if (result != null)
return result;
}
return null;
}
结果:
relation <- lm(Production ~ WeekOfYear, dat)
WeekOfYear <- 1:52
predict(relation, data.frame(WeekOfYear))
dat2 <- data.frame(WeekOfYear, regression = predict(relation, data.frame(WeekOfYear)))
merge(dat, dat2, by = 'WeekOfYear', all.y = TRUE)