所以我开始实现一些模仿STL算法行为的算法,但是使用异构容器a.k.a std :: tuple。
template<typename UnaryPredicate, typename Tuple>
bool all_of(UnaryPredicate&& p, Tuple&& t) noexcept
{
return std::apply([&p](auto&& ...xs){ return (p(std::forward<decltype(xs)>(xs)) && ...); }, std::forward<Tuple>(t));
}
template<typename UnaryPredicate, typename Tuple>
bool any_of(UnaryPredicate&& p, Tuple&& t) noexcept
{
return std::apply([&p](auto&& ...xs){ return (p(std::forward<decltype(xs)>(xs)) || ...); }, std::forward<Tuple>(t));
}
template<typename UnaryPredicate, typename Tuple>
bool none_of(UnaryPredicate&& p, Tuple&& t) noexcept
{
return std::apply([&p](auto&& ...xs){ return !(p(std::forward<decltype(xs)>(xs)) || ...); }, std::forward<Tuple>(t));
}
如果使用返回布尔值的UnaryPredicate,所有这些都可以正常工作。但如果不是呢?如何确保UnaryPredicate在使用元组的每个元素调用时返回一个布尔值?另外,我如何检查UnaryPredicate是否实际上没有抛出任何异常。
我知道有'is_nothrow_invocable'和'invoke_result'等类型特征,但所有这些都需要元组包含的元素类型。我真的必须使用“algorithm_impl”模式吗?
namespace impl
{
template<typename UnaryPredicate, typename Tuple, auto ...Is>
bool all_of_impl(UnaryPredicate&& p, Tuple&& t, std::index_sequence<Is...>) noexcept
{
return std::apply([&p](auto&& ...xs){ return (p(std::forward<decltype(xs)>(xs)) && ...); }, std::forward<Tuple>(t));
}
}
template<typename UnaryPredicate, typename Tuple>
bool all_of(UnaryPredicate&& p, Tuple&& t) noexcept
{
return impl::all_of_impl(std::forward<UnaryPredicate>(p), std::forward<Tuple>(t), std::make_index_sequence<std::tuple_size_v<std::decay_t<Tuple>>>{});
}
现在我可以这样做:
std::enable_if_t<std::conjunction_v<std::is_same<std::invoke_result_t<std::decay_t<UnaryPredicate>, std::tuple_element_t<Is, std::decay_t<Tuple>>>, bool>...>, bool>
但这真的是要走的路吗?
编辑:
好吧,总是我过于复杂的事情。我想我找到了一个可以接受的解决方案:
template<typename UnaryPredicate, typename Tuple>
struct helper;
template<typename UnaryPredicate, typename Tuple>
struct helper2;
template<typename UnaryPredicate, typename ...Ts>
struct helper<UnaryPredicate, std::tuple<Ts...>>
: std::bool_constant<std::conjunction_v<std::is_same<bool, std::invoke_result_t<std::decay_t<UnaryPredicate>, std::decay_t<Ts>>>...>>
{};
template<typename UnaryPredicate, typename ...Ts>
struct helper2<UnaryPredicate, std::tuple<Ts...>>
: std::bool_constant<std::conjunction_v<std::is_nothrow_invocable<std::decay_t<UnaryPredicate>, std::decay_t<Ts>>...>>
{};
template<typename UnaryPredicate, typename Tuple>
inline constexpr auto helper_v{ helper<UnaryPredicate, Tuple>::value };
template<typename UnaryPredicate, typename Tuple>
inline constexpr auto helper2_v{ helper2<UnaryPredicate, Tuple>::value };
template<typename UnaryPredicate, typename Tuple>
std::enable_if_t<helper_v<UnaryPredicate, Tuple>, bool> all_of(UnaryPredicate&& p, Tuple&& t) noexcept(helper2_v<UnaryPredicate, Tuple>)
{
return std::apply([&p](auto&& ...xs){ return (p(std::forward<decltype(xs)>(xs)) && ...); }, std::forward<Tuple>(t));
}
template<typename UnaryPredicate, typename Tuple>
std::enable_if_t<helper_v<UnaryPredicate, Tuple>, bool> any_of(UnaryPredicate&& p, Tuple&& t) noexcept(helper2_v<UnaryPredicate, Tuple>)
{
return std::apply([&p](auto&& ...xs){ return (p(std::forward<decltype(xs)>(xs)) || ...); }, std::forward<Tuple>(t));
}
template<typename UnaryPredicate, typename Tuple>
std::enable_if_t<helper_v<UnaryPredicate, Tuple>, bool> none_of(UnaryPredicate&& p, Tuple&& t) noexcept(helper2_v<UnaryPredicate, Tuple>)
{
return std::apply([&p](auto&& ...xs){ return !(p(std::forward<decltype(xs)>(xs)) || ...); }, std::forward<Tuple>(t));
}
答案 0 :(得分:1)
#define RETURNS(...) \
noexcept(noexcept(__VA_ARGS__)) \
-> decltype(__VA_ARGS__) \
{ return __VA_ARGS__; }
template<class UnaryPredicate, class Tuple>
auto all_of(UnaryPredicate&& p, Tuple&& t)
RETURNS(
std::apply(
[&p](auto&& ...xs){
return (p(std::forward<decltype(xs)>(xs)) && ...);
},
std::forward<Tuple>(t)
)
)
等
答案 1 :(得分:0)
我找到了比我之前的编辑更好的解决方案:)
#include <functional>
#include <iostream>
#include <tuple>
#include <type_traits>
#include <utility>
template<typename UnaryFunction, typename ...Types>
constexpr std::enable_if_t<std::conjunction_v<std::is_same<std::invoke_result_t<UnaryFunction, Types>, bool>...>, bool> AllOf(UnaryFunction&& p, std::tuple<Types...>&& t) noexcept(std::conjunction_v<std::is_nothrow_invocable<UnaryFunction, Types>...>)
{
return std::apply([&](auto&& ...xs) constexpr { return (p(std::forward<decltype(xs)>(xs)) && ...); }, std::forward<std::tuple<Types...>>(t));
}
template<typename UnaryFunction, typename ...Types>
constexpr std::enable_if_t<std::conjunction_v<std::is_same<std::invoke_result_t<UnaryFunction, Types>, bool>...>, bool> AnyOf(UnaryFunction&& p, std::tuple<Types...>&& t) noexcept(std::conjunction_v<std::is_nothrow_invocable<UnaryFunction, Types>...>)
{
return std::apply([&](auto&& ...xs) constexpr { return (p(std::forward<decltype(xs)>(xs)) || ...); }, std::forward<std::tuple<Types...>>(t));
}
template<typename UnaryFunction, typename ...Types>
constexpr std::enable_if_t<std::conjunction_v<std::is_same<std::invoke_result_t<UnaryFunction, Types>, bool>...>, bool> NoneOf(UnaryFunction&& p, std::tuple<Types...>&& t) noexcept(std::conjunction_v<std::is_nothrow_invocable<UnaryFunction, Types>...>)
{
return std::apply([&](auto&& ...xs) constexpr { return !(p(std::forward<decltype(xs)>(xs)) || ...); }, std::forward<std::tuple<Types...>>(t));
}
int main()
{
std::cout
<< std::boolalpha
<< AllOf([](auto&& x){ return x; }, std::make_tuple(true, true, true)) << "\n"
<< AnyOf([](auto&& x){ return x; }, std::make_tuple(false, false, true)) << "\n"
<< NoneOf([](auto&& x){ return x; }, std::make_tuple(false, false, false)) << "\n";
}