Michal Forisek的Dijkstra算法的C ++ 11实现确实可以非常快速地计算出最短距离。优雅地没有太多的代码。但是我怎么能回归呢?
struct edge
{
edge(const int _to, const int _len): to(_to), length(_len)
{
}
int to;
int length;
};
int dijkstra(const vector< vector<edge> > &graph, int source, int target) {
vector<int> min_distance( graph.size(), INT_MAX );
min_distance[ source ] = 0;
set< pair<int,int> > active_vertices;
active_vertices.insert( {0,source} );
while (!active_vertices.empty()) {
int where = active_vertices.begin()->second;
if (where == target) return min_distance[where];
active_vertices.erase( active_vertices.begin() );
for (auto ed : graph[where])
if (min_distance[ed.to] > min_distance[where] + ed.length) {
active_vertices.erase( { min_distance[ed.to], ed.to } );
min_distance[ed.to] = min_distance[where] + ed.length;
active_vertices.insert( { min_distance[ed.to], ed.to } );
}
}
return INT_MAX;
}
int main()
{
std::vector<edge> node0 {edge(1,1), edge (3,7), edge (2,1)};
std::vector<edge> node1 {edge(0,1), edge (2,2), edge (3,4)};
std::vector<edge> node2 {edge(1,2), edge (3,3), edge (0,1)};
std::vector<edge> node3 {edge(2,3), edge (0,7), edge (1,4)};
std::vector<std::vector<edge>> graph {node0, node1, node2, node3};
int r = dijkstra(graph, 0, 3);
return 0;
}
答案 0 :(得分:3)
您可以通过创建“父母”列表使其返回最短路径。基本上,此列表将保存您跟踪的每个顶点的父级。通过父级,我的意思是对于任何顶点,该顶点的父级是最短路径中的前一个节点。更新min_distance列表时,还应通过将顶点“ed.to”的父级设置为“where”来更新“父级”列表。然后,您可以返回父列表并跟踪它以查找最短路径。只需访问目标节点的父节点,然后按顺序移动,直到找到父节点为源的节点。那是你的道路。
答案 1 :(得分:0)
而不是返回:
从目的地开始,检查具有边缘的所有节点。选择与目标相邻的节点,其中最小最小距离+ ed.length到目标节点。如果相邻节点不在最小距离图中,则忽略它。
这是您的新目的地。重复,直到您的目的地为您的来源。
基本上你可以贪婪地回到起点,因为你知道哪个节点最便宜到达起点。
如果您的边缘是双向的,或者如果您有办法向后查找边缘,这很便宜。
否则,在最小距离地图中跟踪您来自的最小距离和节点,可以轻松实现。
struct edge
{
int to;
int length;
};
using node = std::vector<edge>;
using graph = std::vector<node>;
void add_edge( graph& g, int start, int finish, int length ) {
if ((int)g.size() <= (std::max)(start, finish))
g.resize( (std::max)(start,finish)+1 );
g[start].push_back( {finish, length} );
g[finish].push_back( {start, length} );
}
using path = std::vector<int>;
struct result {
int distance;
path p;
};
result dijkstra(const graph &graph, int source, int target) {
std::vector<int> min_distance( graph.size(), INT_MAX );
min_distance[ source ] = 0;
std::set< std::pair<int,int> > active_vertices;
active_vertices.insert( {0,source} );
while (!active_vertices.empty()) {
int where = active_vertices.begin()->second;
if (where == target)
{
int cost = min_distance[where];
// std::cout << "cost is " << cost << std::endl;
path p{where};
while (where != source) {
int next = where;
for (edge e : graph[where])
{
// std::cout << "examine edge from " << where << "->" << e.to << " length " << e.length << ":";
if (min_distance[e.to] == INT_MAX)
{
// std::cout << e.to << " unexplored" << std::endl;
continue;
}
if (e.length + min_distance[e.to] != min_distance[where])
{
// std::cout << e.to << " not on path" << std::endl;
continue;
}
next = e.to;
p.push_back(next);
// std::cout << "backtracked to " << next << std::endl;
break;
}
if (where==next)
{
// std::cout << "got lost at " << where << std::endl;
break;
}
where = next;
}
std::reverse( p.begin(), p.end() );
return {cost, std::move(p)};
}
active_vertices.erase( active_vertices.begin() );
for (auto ed : graph[where])
if (min_distance[ed.to] > min_distance[where] + ed.length) {
active_vertices.erase( { min_distance[ed.to], ed.to } );
min_distance[ed.to] = min_distance[where] + ed.length;
active_vertices.insert( { min_distance[ed.to], ed.to } );
}
}
return {INT_MAX};
}
int main()
{
graph g;
add_edge(g, 0, 1, 1);
add_edge(g, 0, 3, 7);
add_edge(g, 0, 2, 1);
add_edge(g, 1, 2, 2);
add_edge(g, 1, 3, 4);
add_edge(g, 2, 3, 3);
auto r = dijkstra(g, 0, 3);
std::cout << "cost is " << r.distance << ": ";
for (int x:r.p) {
std::cout << x << " then ";
}
std::cout << "and we are done.\n";
return 0;
}