在scikit中从LDA获取主题词分发学习

时间:2017-05-26 18:58:46

标签: python scikit-learn lda

我想知道scikit的LDA实现中是否存在返回主题词分布的方法。喜欢genism show_topics()方法。我检查了文档,但没有找到任何内容。

1 个答案:

答案 0 :(得分:6)

看看sklearn.decomposition.LatentDirichletAllocation.components_

  

components_:array,[n_topics,n_features]

     

主题词分发。 components_ [i,j]表示主题i中的单词j。

这是一个最小的例子:

import numpy as np
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer

data = ['blah blah foo bar', 'foo foo foo foo bar', 'bar bar bar bar foo',
        'foo bar bar bar baz foo', 'foo foo foo bar baz', 'blah banana', 
        'cookies candy', 'more text please', 'hey there are more words here',
        'bananas', 'i am a real boy', 'boy', 'girl']

vectorizer = CountVectorizer()
X = vectorizer.fit_transform(data)

vocab = vectorizer.get_feature_names()

n_top_words = 5
k = 2

model = LatentDirichletAllocation(n_topics=k, random_state=100)

id_topic = model.fit_transform(X)

topic_words = {}

for topic, comp in enumerate(model.components_):
    # for the n-dimensional array "arr":
    # argsort() returns a ranked n-dimensional array of arr, call it "ranked_array"
    # which contains the indices that would sort arr in a descending fashion
    # for the ith element in ranked_array, ranked_array[i] represents the index of the
    # element in arr that should be at the ith index in ranked_array
    # ex. arr = [3,7,1,0,3,6]
    # np.argsort(arr) -> [3, 2, 0, 4, 5, 1]
    # word_idx contains the indices in "topic" of the top num_top_words most relevant
    # to a given topic ... it is sorted ascending to begin with and then reversed (desc. now)    
    word_idx = np.argsort(comp)[::-1][:n_top_words]

    # store the words most relevant to the topic
    topic_words[topic] = [vocab[i] for i in word_idx]

查看结果:

for topic, words in topic_words.items():
    print('Topic: %d' % topic)
    print('  %s' % ', '.join(words))

Topic: 0
  more, blah, here, hey, words
Topic: 1
  foo, bar, blah, baz, boy

显然,您应该使用更大的文本来尝试此代码,但这是获取给定数量主题的信息最丰富的单词的一种方法。