myfunction3 <- function(seq2,z)
for(j in 1:100)
{
if(z[j]>0.7)
{
if(seq2[j] =='A') replace(seq2,j,sample(c("C","G","T"),1))
else if(seq2[j] =='G') replace(seq2,j,sample(c("C","A","T"),1))
else if(seq2[j] =='T') replace(seq2,j,sample(c("C","G","A"),1))
else if(seq2[j] =='C') replace(seq2,j,sample(c("A","G","T"),1))
else if(seq2[j]=='E') replace(seq2,j,'T')
}
}
return(seq2)
我已经根据概率向量z编写了这个函数来模拟给定的DNA序列seq2,其中如果概率大于0.7,则新序列可以具有任何其他三个核苷酸(A,G,T,C)在它的位置。但每次它返回一个NULL向量。
答案 0 :(得分:1)
以下是您的功能的紧凑变体:
myfunction3 <- function(seq2,z) {
for(j in which(z>0.7))
seq2[j] <- switch(seq2[j],
A=sample(c("C","G","T"),1),
G=sample(c("C","A","T"),1),
T=sample(c("C","G","A"),1),
C=sample(c("A","G","T"),1),
E="T"
)
return(seq2)
}
以下是它的工作原理:
set.seed(42)
z <- sample(1:10)/10
seq <- sample(c("A","G","T", "C"), 10, repl=TRUE)
data.frame(seq, z, seq2=myfunction3(seq,z))
# seq z seq2
# 1 G 1.0 T
# 2 T 0.9 C
# 3 C 0.3 C
# 4 G 0.6 G
# 5 G 0.4 G
# 6 C 0.8 T
# 7 C 0.5 C
# 8 A 0.1 A
# 9 G 0.2 G
# 10 T 0.7 T
测试最后一个条件(E =“T”):
set.seed(42)
z <- sample(3:17)/10
seq <- sample(c("A","G","T", "C", "E"), length(z), repl=TRUE)
data.frame(seq, z, seq2=myfunction3(seq,z))
答案 1 :(得分:1)
我假设seq2
是一个字符向量,z
是样本长度的向量,并且您希望改变seq2
中z > 0.7
<的位置/ p>
这样做的一种方法是首先创建一个有效替换的列表,由核苷酸键入,然后写一个变异函数,然后sapply
函数到seq2
的子向量,其中{{1} }}:
z > 0.7
例如:
substitutions <- list(A = c("C","G","T"),
G = c("A","C","T"),
T = c("A","C","G"),
C = c("A","G","T"),
E = c("T"))
mutate <- function(nucleotide){
sample(substitutions[[nucleotide]],1)
}
myfunc <- function(seq2,z){
to.change <- which(z > 0.7)
seq2[to.change] <- sapply(seq2[to.change],mutate)
seq2
}