我有一个像这样的数据框
DF
order_date amount
0 2015-10-02 1
1 2015-12-21 15
2 2015-12-24 3
3 2015-12-26 4
4 2015-12-27 5
5 2015-12-28 10
我想根据df [“order_date”]到df [“order_date”] + 6天的范围总结df [“amount”]
order_date amount sum
0 2015-10-02 1 1
1 2015-12-21 15 27 //comes from 15 + 3 + 4 + 5
2 2015-12-24 3 22 //comes from 3 + 4 + 5 + 10
3 2015-12-26 4 19
4 2015-12-27 5 15
5 2015-12-28 10 10
order_date的数据类型是datetime 试图使用iloc但是效果不好...... 如果有人有任何关于谁在这方面工作的想法/例子, 请让我知道。
答案 0 :(得分:3)
如果pandas rolling允许左对齐窗口(默认为右对齐),那么答案将是一个简单的单行:df.set_index('order_date').amount.rolling('7d',min_periods=1,align='left').sum()
,但前瞻性尚未实现(即{ {1}}不接受rolling
参数)。所以,我想出的伎俩就是暂时“扭转”日期。解决方案:
align
输出:
df.index = pd.to_datetime(pd.datetime.now() - df.order_date)
df['sum'] = df.sort_index().amount.rolling('7d',min_periods=1).sum()
df.reset_index(drop=True)
答案 1 :(得分:0)
扩展我的评论:
from datetime import timedelta
df['sum'] = 0
for i in range(len(df)):
dt1 = df['order_date'][i]
dt2 = dt1 + timedelta(days=6)
df['sum'][i] = sum(df['amount'][(df['order_date'] >= dt1) & (df['order_date'] <= dt2)])
可能有更好的方法来做到这一点,但它有效...
答案 2 :(得分:0)
我有办法解决这个问题。它有效..(我相信应该有更好的方法来做到这一点。)
import pandas as pd
df['order_date']=pd.to_datetime(pd.Series(df.order_date))
Temp=pd.DataFrame(pd.date_range(start='2015-10-02', end='2017-01-01'),columns=['STDate'])
Temp=Temp.merge(df,left_on='STDate',right_on='order_date',how='left')
Temp['amount']=Temp['amount'].fillna(0)
Temp.sort(['STDate'],ascending=False,inplace=True)
Temp['rolls']=pd.rolling_sum(Temp['amount'],window =7,min_periods=0)
Temp.loc[Temp.STDate.isin(df.order_date),:].sort(['STDate'],ascending=True)
STDate Unnamed: 0 order_date amount rolls
0 2015-10-02 0.0 2015-10-02 1.0 1.0
80 2015-12-21 1.0 2015-12-21 15.0 27.0
83 2015-12-24 2.0 2015-12-24 3.0 22.0
85 2015-12-26 3.0 2015-12-26 4.0 19.0
86 2015-12-27 4.0 2015-12-27 5.0 15.0
87 2015-12-28 5.0 2015-12-28 10.0 10.0
答案 3 :(得分:0)
将order_date
设置为DatetimeIndex
,以便您可以使用df.ix[time1:time2]
获取时间范围行,然后过滤amount
列并对其求和。
您可以尝试:
from datetime import timedelta
df = pd.read_fwf('test2.csv')
df.order_date = pd.to_datetime(df.order_date)
df =df.set_index(pd.DatetimeIndex(df['order_date']))
sum_list = list()
for i in range(len(df)):
sum_list.append(df.ix[df.ix[i]['order_date']:(df.ix[i]['order_date'] + timedelta(days=6))]['amount'].sum())
df['sum'] = sum_list
df
输出:
order_date amount sum
2015-10-02 2015-10-02 1 1
2015-12-21 2015-12-21 15 27
2015-12-24 2015-12-24 3 22
2015-12-26 2015-12-26 4 19
2015-12-27 2015-12-27 5 15
2015-12-28 2015-12-28 10 10
答案 4 :(得分:0)
import datetime
df['order_date'] = pd.to_datetime(df['order_date'], format='%Y-%m-%d')
df.set_index(['order_date'], inplace=True)
# Sum rows within the range of six days in the future
d = {t: df[(df.index >= t) & (df.index <= t + datetime.timedelta(days=6))]['amount'].sum()
for t in df.index}
# Assign the summed values back to the dataframe
df['amount_sum'] = [d[t] for t in df.index]
df
现在是:
amount amount_sum
order_date
2015-10-02 1.0 1.0
2015-12-21 15.0 27.0
2015-12-24 3.0 22.0
2015-12-26 4.0 19.0
2015-12-27 5.0 15.0
2015-12-28 10.0 10.0