我有一个看起来像这样的大型DataFrame: df =
UPC Unit_Sales Price Price_Change Date
0 22 15 1.99 NaN 2017-10-10
1 22 7 2.19 True 2017-10-12
2 22 6 2.19 NaN 2017-10-13
3 22 7 1.99 True 2017-10-16
4 22 4 1.99 NaN 2017-10-17
5 35 15 3.99 NaN 2017-10-09
6 35 17 3.99 NaN 2017-10-11
7 35 5 4.29 True 2017-10-13
8 35 8 4.29 NaN 2017-10-15
9 35 2 4.29 NaN 2017-10-15
基本上我试图记录一旦产品(UPC)的销售在接下来的7天价格发生变化后如何反应。我想创建一个新列[' Reaction'],它记录了从价格变化当天到7天前的单位销售总和。请记住,有时UPC的价格变化超过2,因此我希望每次价格变动都有不同的金额。 所以我想看到这个:
UPC Unit_Sales Price Price_Change Date Reaction
0 22 15 1.99 NaN 2017-10-10 NaN
1 22 7 2.19 True 2017-10-12 13
2 22 6 2.19 NaN 2017-10-13 NaN
3 22 7 1.99 True 2017-10-16 11
4 22 4 1.99 NaN 2017-10-19 NaN
5 35 15 3.99 NaN 2017-10-09 NaN
6 35 17 3.99 NaN 2017-10-11 NaN
7 35 5 4.29 True 2017-10-13 15
8 35 8 4.29 NaN 2017-10-15 NaN
9 35 2 4.29 NaN 2017-10-18 NaN
在我的数据中如何设置日期很困难。有时候(比如UPC 35),日期不会超过7天。所以我希望它默认为下一个最近的日期,或者有多少日期(如果少于7天)。
以下是我尝试的内容: 我将日期设置为日期时间,我想通过.days方法计算天数。 这就是我考虑设置代码的方式(草稿):
x = df.loc[df['Price_Change'] == 'True']
for x in df:
df['Reaction'] = sum(df.Unit_Sales[1day :8days])
有没有更容易的方法来做到这一点,也许没有for循环?
答案 0 :(得分:1)
您只需要ffill
groupby
df.loc[df.Price_Change==True,'Reaction']=df.groupby('UPC').apply(lambda x : (x['Price_Change'].ffill()*x['Unit_Sales']).sum()).values
df
Out[807]:
UPC Unit_Sales Price Price_Change Date Reaction
0 22 15 1.99 NaN 2017-10-10 NaN
1 22 7 2.19 True 2017-10-12 24.0
2 22 6 2.19 NaN 2017-10-13 NaN
3 22 7 2.19 NaN 2017-10-16 NaN
4 22 4 2.19 NaN 2017-10-17 NaN
5 35 15 3.99 NaN 2017-10-09 NaN
6 35 17 3.99 NaN 2017-10-11 NaN
7 35 5 4.29 True 2017-10-13 15.0
8 35 8 4.29 NaN 2017-10-15 NaN
9 35 2 4.29 NaN 2017-10-15 NaN
更新
df['New']=df.groupby('UPC').apply(lambda x : x['Price_Change']==True).cumsum().values
v1=df.groupby(['UPC','New']).apply(lambda x : (x['Price_Change'].ffill()*x['Unit_Sales']).sum())
df=df.merge(v1.reset_index())
df[0]=df[0].mask(df['Price_Change']!=True)
df
Out[927]:
UPC Unit_Sales Price Price_Change Date New 0
0 22 15 1.99 NaN 2017-10-10 0 NaN
1 22 7 2.19 True 2017-10-12 1 13.0
2 22 6 2.19 NaN 2017-10-13 1 NaN
3 22 7 1.99 True 2017-10-16 2 11.0
4 22 4 1.99 NaN 2017-10-17 2 NaN
5 35 15 3.99 NaN 2017-10-09 2 NaN
6 35 17 3.99 NaN 2017-10-11 2 NaN
7 35 5 4.29 True 2017-10-13 3 15.0
8 35 8 4.29 NaN 2017-10-15 3 NaN
9 35 2 4.29 NaN 2017-10-15 3 NaN