当我训练CNN对失真数字从0到9变化的图像进行分类时,训练集和测试集的准确性明显提高。
Epoch[0] Batch [100] Train-multi-accuracy_0=0.296000
...
Epoch[0] Batch [500] Train-multi-accuracy_0=0.881900
在Epoch [1]和Epoch [2]中,准确度在0.85和0.95之间略微振荡,然而,
Epoch[3] Batch [300] Train-multi-accuracy_0=0.926400
Epoch[3] Batch [400] Train-multi-accuracy_0=0.105300
Epoch[3] Batch [500] Train-multi-accuracy_0=0.098200
此后,准确率约为0.1,这意味着网络只提供随机预测。 我多次重复训练,每次都会发生这种情况。它出什么问题了? 适应性学习率策略是原因吗?
model = mx.model.FeedForward(...,
optimizer = 'adam',
num_epoch = 50,
wd = 0.00001,
...,
)
答案 0 :(得分:1)
您正在训练的模型究竟是什么?如果您正在使用mnist数据集,通常使用sgd训练的简单2层MLP可以提供相当高的准确度。