我想使lognormal适合我已经装箱的数据。条形图如下所示:
不幸的是,当我尝试使用标准lognorm.pdf()
时,拟合分布的形状非常不同。我猜是因为我的数据已被分箱。这是代码:
times, data, bin_points = ReadHistogramFile(filename)
xmin = 200
xmax = 800
x = np.linspace(xmin, xmax, 1000)
shape, loc, scale = stats.lognorm.fit(data, floc=0)
pdf = stats.lognorm.pdf(x, shape, loc=loc, scale=scale)
area=data.sum()
plt.bar(bars, data, width=10, color='b')
plt.plot(x*area, pdf, 'k' )
以下是拟合分布的样子: 显然,缩放也存在问题。尽管如此,我并不那么担心。我的主要问题是,分布的形状。这可能与:this question重复,但我找不到正确的解决方案。我尝试了它,并且仍然得到了与上述相同的形状。谢谢你的帮助!
更新
通过使用curve_fit()
,我能够有所帮助。但我还不满意。我想要原来的箱子,而不是统一箱子。我也不确定,究竟发生了什么,以及是否有更好的契合度。这是代码:
def normalize_integral(data, bin_size):
normalized_data = np.zeros(size(data))
print bin_size
sum = data.sum()
integral = bin_size*sum
for i in range(0, size(data)-1):
normalized_data[i] = data[i]/integral
print 'integral:', normalized_data.sum()*bin_size
return normalized_data
def pdf(x, mu, sigma):
"""pdf of lognormal distribution"""
return (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) / (x * sigma * np.sqrt(2 * np.pi)))
bin_points=np.linspace(280.5, 1099.55994, len(bin_points))
data=[9.78200000e+03 1.15120000e+04 1.18000000e+04 1.79620000e+04 2.76980000e+04 2.78260000e+04 3.35460000e+04 3.24260000e+04 3.16500000e+04 3.30820000e+04 4.84560000e+04 5.86500000e+04 6.34220000e+04 5.11880000e+04 5.13180000e+04 4.74320000e+04 4.35420000e+04 4.13400000e+04 3.60880000e+04 2.96900000e+04 2.66640000e+04 2.58720000e+04 2.57560000e+04 2.20960000e+04 1.46880000e+04 9.97200000e+03 5.74200000e+03 3.52000000e+03 2.74600000e+03 2.61800000e+03 1.50000000e+03 7.96000000e+02 5.40000000e+02 2.98000000e+02 2.90000000e+02 2.22000000e+02 2.26000000e+02 1.88000000e+02 1.20000000e+02 5.00000000e+01 5.40000000e+01 5.80000000e+01 5.20000000e+01 2.00000000e+01 2.80000000e+01 6.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
normalized_data_unitybins = normalize_integral(data,1)
plt.figure(figsize=(9,4))
ax1=plt.subplot(121)
ax2=plt.subplot(122)
ax2.bar(unity_bins, normalized_data_unitybins, width=1, color='b')
fitParams, fitCov = curve_fit(pdf, unity_bins, normalized_data_unitybins, p0=[1,1],maxfev = 1000000)
fitData=pdf(unity_bins, *fitParams)
ax2.plot(unity_bins, fitData,'g-')
ax1.bar(bin_points, normalized_data_unitybins, width=10, color='b')
fitParams, fitCov = curve_fit(pdf, bin_points, normalized_data_unitybins, p0=[1,1],maxfev = 1000000)
fitData=pdf(bin_points, *fitParams)
ax1.plot(bin_points, fitData,'g-')
答案 0 :(得分:2)
如您所述,您无法对装箱数据使用lognorm.fit
。所以你需要做的就是从直方图中恢复原始数据。显然这不是“无损”,越多的箱子就越好。
包含一些生成数据的示例代码:
import numpy as np
import scipy.stats as stats
import matplotlib.pylab as plt
# generate some data
ln = stats.lognorm(0.4,scale=100)
data = ln.rvs(size=2000)
counts, bins, _ = plt.hist(data, bins=50)
# note that the len of bins is 51, since it contains upper and lower limit of every bin
# restore data from histogram: counts multiplied bin centers
restored = [[d]*int(counts[n]) for n,d in enumerate((bins[1:]+bins[:-1])/2)]
# flatten the result
restored = [item for sublist in restored for item in sublist]
print stats.lognorm.fit(restored, floc=0)
dist = stats.lognorm(*stats.lognorm.fit(restored, floc=0))
x = np.arange(1,400)
y = dist.pdf(x)
# the pdf is normalized, so we need to scale it to match the histogram
y = y/y.max()
y = y*counts.max()
plt.plot(x,y,'r',linewidth=2)
plt.show()