似乎无法弄清楚我的代码有什么问题(Project Euler问题8)。我想找到下面10,000位数字中13个相邻数字的最大乘积,我的答案是错误的。
my_list = list('7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450')
for i in range(1000):
my_list[i] = int(my_list[i])
previous_product = 1
for x in range(13):
previous_product *= my_list[x]
current_product = previous_product*my_list[13]/my_list[0]
for i in range(1, 987):
if current_product > previous_product:
maximum_product = current_product
previous_product = current_product
if my_list[i]==0:
current_product = 1
for x in range(13):
current_product *= my_list[i+x+1]
else:
current_product = previous_product*my_list[i+x+1]/my_list[i]
print(maximum_product)
编辑:解决了! maximum_product的定义错误...它取代了最新“当前产品”的价值,该价值恰好大于以前的产品,不一定是最大的产品。
正确,尽管不是超级高效的代码:
my_list = list('7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450')
for i in range(1000):
my_list[i] = int(my_list[i])
previous_product = 1
for x in range(13):
previous_product *= my_list[x]
current_product = previous_product*my_list[13]/my_list[0]
large_products = []
for i in range(1, 987):
if current_product > previous_product:
large_products.append(current_product)
previous_product = current_product
if my_list[i]==0:
current_product = 1
for x in range(13):
current_product *= my_list[i+x+1]
else:
current_product = previous_product*my_list[i+x+1]/my_list[i]
print(max(large_products))
答案 0 :(得分:1)
我还没有检查为什么你的方法不起作用,但你可以通过以下方式轻松解决这个问题:
import operator
from functools import reduce
my_int_list = [int(char) for char in my_list]
max(map(lambda *x: reduce(operator.mul, x),
my_int_list[0:],
my_int_list[1:],
my_int_list[2:],
my_int_list[3:],
my_int_list[4:],
my_int_list[5:],
my_int_list[6:],
my_int_list[7:],
my_int_list[8:],
my_int_list[9:],
my_int_list[10:],
my_int_list[11:],
my_int_list[12:]))
如果这会占用太多内存,您也可以使用itertools.islice
代替使用[idx:]
进行直接切片。
答案 1 :(得分:1)
以下是您的滑动窗口构思的实现,已修改,以便它仅适用于不包含零的字符串:
def max_product(s,k):
s = [int(d) for d in s]
p = 1
for d in s[:k]:
p *= d
m = p
for i,d in enumerate(s[k:]):
p *= d
p //= s[i]
if p > m: m = p
return p
在上面的s
中,长度至少为k
(问题中为k = 13
)的非零数字字符串。它返回k
个连续数字的最大乘积。微妙的方式是枚举作品。当您在enumerate
上使用s[k:]
时,i
的索引从0
开始 - 这正是您想要在第一次通过该循环时删除的因素。
将此应用于
data = '7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450'
首先拆分为不包含零的块,且长度至少为13位:
chunks = [s for s in data.split('0') if len(s) >= 13]
有24个这样的块。要获得总体最大值,只需占用每个块的最大值:
print(max(max_product(s,13) for s in chunks))
确实打印23514624000
答案 2 :(得分:0)
您当前的代码无效,因为它似乎是基于错误的计划 - 或者至少是我不完全理解的计划。这是一种不同的方式 考虑算法。
想象一下,我们有这个号码:7316717
。我们正在寻找最大值
3个相邻数字的乘积。我们可以解决这个问题如下。我
对每个步骤的结果进行硬编码,但您应该能够编写Python
用于计算每个部分的代码。
查找所有相邻的3位数序列:
seqs = [731, 316, 167, 671, 717]
计算他们的产品:
products = [21, 18, 42, 42, 49]
找到他们的最大值。
answer = max(products)
答案 3 :(得分:0)
我还没有检查过你的代码,以及它以何种方式工作。
但是解决问题的一个简单方法是,从输入数据生成所有可能的切片,其中包含13个相邻数字,然后找到其元素的乘积然后找到它们的最大乘积。
这是一种方法:
data = '7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450'
def product(a):
prod = 1
for k in a:
prod *= int(k)
return prod
def max_adjacent_number(data, suit=13):
return max(product(data[k:k+suit]) for k in range(len(data)) if '0' not in data[k:k+suit])
from time import time
start = time()
val = max_adjacent_number(data)
elapsed = time() - start
print("Solution: {0} \telapsed: {1:.5f}ms".format(val, elapsed*1000))
输出:
# Best time
Solution: 23514624000 elapsed: 1.31226ms
答案 4 :(得分:0)
您可以使用以下列表理解来提高代码效率:
import time
n = str(x) #x is the long number
a = time.time()
result = max(reduce(lambda x, y: x * y, map(int, n[i:i+13])) for i in xrange(len(n)-12) if '0' not in n[i:i+13])
b = time.time()
print "Maximum adjacent numbers product: %d" % result
print "Time taken:", (b-a)*1000, "ms"
输出:
Maximum adjacent numbers product: 23514624000
Time taken: 4.34899330139 ms