OpenCv 3.1中给定矩阵的错误形状 - Java

时间:2017-05-19 09:56:23

标签: java c++ opencv matrix machine-learning

我已经训练了FaceRecognizer,所有图像都具有相同的大小,并将灰度图像传递给预测器。但我面对这个错误

OpenCV错误:参数不正确(给定矩阵的形状错误。尺寸(src)=(1,150544),尺寸(W)=(37636,5)。)in subspaceProject,file / home / * ******* / opencv / modules / core / src / lda.cpp,第182行

这是代码

public static void main(String[] args) {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        String trainingDir = "res/";
        File root = new File(trainingDir);
        FilenameFilter imgFilter = new FilenameFilter() {
            public boolean accept(File dir, String name) {
                name = name.toLowerCase();
                return name.endsWith(".jpg") || name.endsWith(".pgm") || name.endsWith(".png");
            }
        };

        File[] imageFiles = root.listFiles(imgFilter);
        ArrayList <Mat> images = new ArrayList(imageFiles.length);
        Mat labels = new Mat(imageFiles.length,1,CvType.CV_32SC1);
        int[][] labelsBuffer = new int[imageFiles.length][imageFiles.length];

        int counter =0;
        for(File image: imageFiles){
            Mat img = Imgcodecs.imread(image.getAbsolutePath(),Imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
            int label = Integer.parseInt(image.getName().split("\\.")[2]);
            //images.add(label, img);
            images.add(img);
            counter++;
        }
        FaceRecognizer faceRecognizer = Face.createEigenFaceRecognizer();
        Mat temp = new Mat();

        faceRecognizer.train(images, labels);
        CascadeClassifier cascadeFaceClassifier = new CascadeClassifier(
                "haarcascade_frontalface_default.xml");
        VideoCapture videoDevice = new VideoCapture();
        videoDevice.open(0);
        int x = 0;
        if (videoDevice.isOpened()) {
            while (true) {      
                Mat frameCapture = new Mat();
                videoDevice.read(frameCapture);
                MatOfRect faces = new MatOfRect();
                cascadeFaceClassifier.detectMultiScale(frameCapture, faces, 2.0, 5, 0,new Size(),new Size());


                for (Rect rect : faces.toArray()) {
                    Mat resizedCapture = new Mat(frameCapture,rect);
                    Imgproc.cvtColor(resizedCapture, resizedCapture, Imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
                    Size imageSize = new Size(194,194);
                    Imgproc.resize(resizedCapture,resizedCapture , imageSize);

                    System.out.println(images.get(0).rows());
                    System.out.println(resizedCapture.rows());
                    System.out.println(images.get(0).cols());
                    System.out.println(resizedCapture.cols());
                    try{
                        x = faceRecognizer.predict_label(resizedCapture);
                    }catch(Exception e){
                        System.out.println(e.getMessage());
                    }
                    x++;
                    Imgproc.putText(frameCapture, "Face"+x, new Point(rect.x,rect.y-5), 1, 2, new Scalar(0,0,255));
                    Imgproc.rectangle(frameCapture, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height),new Scalar(0, 100, 0),3);
                }



                PushImage(ConvertMat2Image(frameCapture));
                //System.out.println(String.format("FACES = %s EYES =  %s detected.", faces.toArray().length,eyes.toArray().length,nose.toArray().length));
            }
        } else {
            System.out.println("Video Device Not Working");
            return;
        }
    }
    private static BufferedImage ConvertMat2Image(Mat matImage) {


        MatOfByte matOfByte = new MatOfByte();
        Imgcodecs.imencode(".jpg", matImage, matOfByte);
        byte[] byteArray = matOfByte.toArray();
        BufferedImage img = null;
        try {
            InputStream in = new ByteArrayInputStream(byteArray);
            img = ImageIO.read(in);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
        return img;
    }

    public static void PencereHazirla() {
        frame = new JFrame();
        frame.setLayout(new FlowLayout());
        frame.setSize(700, 600);
        frame.setVisible(true);
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    }
    public static void PushImage(Image img2) {
        if (frame == null)
            PencereHazirla();
        if (lbl != null)
            frame.remove(lbl);
        icon = new ImageIcon(img2);
        lbl = new JLabel();
        lbl.setIcon(icon);
        frame.add(lbl);
        frame.revalidate();
    }
}

1 个答案:

答案 0 :(得分:0)

我正在尝试Image.cvtColor并使用Imagecodecs转换为灰度增加4倍。 对此的解决方案是

Imgproc.cvtColor(resizedCapture, resizedCapture, Imgproc.COLOR_BGR2GRAY);

Answer Given on opencv community