据我所知,浮点数的精度有限。但我不明白为什么64位浮点数(我假设这些浮点数)会溢出这些值:
ipdb> (-1e+10 - 0.01)
-10000000000.01 # 0.01 still visible
ipdb> (-1e+20 - 0.01)
-1e+20 # 0.01 is gone, I assume because of floating point precision
这可能是相关的:
ipdb> sys.float_info
sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021, min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1)
请注意,我想要解决的实际问题是将这些值规范化为0到1之间[-1.3229999632394e+32, 15000.0, -11.432000160217285, -11.321000099182129]
答案 0 :(得分:0)
通常不需要具备这种精确度,但有些包可以为您完成,例如Bigfloat
from bigfloat import *
print (-1e+20 - 0.01) == -1e20
with precision(64*2):
a = BigFloat.exact(-1e+20)
b = BigFloat.exact(0.01)
print a == b
将输出:
True
False
缩放也有效
来自bigfloat导入精度,BigFloat
listy = [-1.3229999632394e+32, 15000.0, -11.432000160217285, -11.321000099182129]
m = min(listy) #do this before import, as BigFloat
M = max(listy)
with precision(128):
scale = lambda x : (x-BigFloat(m)) / (BigFloat(M)-BigFloat(m))
print [ scale(BigFloat(i)) for i in listy ]