我有一个groupby对象:
#include <stdio.h>
#include <string>
#include <winsock2.h>
#include <ws2tcpip.h>
#pragma comment(lib, "Ws2_32.lib")
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#define SERVERPORT 1900
char buff[] = "M-SEARCH * HTTP/1.1\r\nHOST: 239.255.255.250:1900\r\nMAN: \"ssdp:discover\"\r\nMX: 3\r\nST: upnp:rootdevice\r\n";
int main()
{
char rcvdbuff[1000];
int len, Ret = 2;
WSADATA wsaData;
struct sockaddr_in their_addr;
SOCKET sock;
WSAStartup(MAKEWORD(2, 2), &wsaData);
sock = socket(AF_INET, SOCK_DGRAM, 0);
their_addr.sin_family = AF_INET;
their_addr.sin_addr.s_addr = inet_addr("239.255.255.250");
their_addr.sin_port = htons(SERVERPORT);
len = sizeof(struct sockaddr_in);
while (1)
{
printf("buff:\n%s\n", buff);
Ret = sendto(sock, buff, strlen(buff), 0, (struct sockaddr*)&their_addr, len);
if (Ret < 0)
{
printf("error in SENDTO() function");
closesocket(sock);
return 0;
}
//Receiving Text from server
printf("\n\nwaiting to recv:\n");
memset(rcvdbuff, 0, sizeof(rcvdbuff));
Ret = recvfrom(sock, rcvdbuff, sizeof(rcvdbuff), 0, (struct sockaddr *)&their_addr, &len);
if (Ret < 0)
{
printf("Error in Receiving");
return 0;
}
rcvdbuff[Ret - 1] = '\0';
printf("RECEIVED MESSAGE FROM SERVER\t: %s\n", rcvdbuff);
//Delay for testing purpose
Sleep(3 * 1000);
}
closesocket(sock);
WSACleanup();
}
我的目标是按照比率下降(最右边的列)排序前100个ID,其中isconfirm = 0。
为此,我考虑使用名称很好的列来获得一个漂亮的数据框,这样我就可以在isconfirm = 0时根据比率查询顶部ID。
我试过,例如,
g = dfchurn.groupby('ID')['isconfirm'].value_counts().groupby(level=0).apply(lambda x: x / float(x.sum()))
type(g)
Out[230]: pandas.core.series.Series
g.head(5)
Out[226]:
ID isconfirm
0000 0 0.985981
1 0.014019
0064 0 0.996448
1 0.003552
0080 0 0.997137
那在任何地方都没有领先优势。必须有一个干净简洁的方法来做到这一点。
答案 0 :(得分:1)
您可以使用isconfirm
选择g.loc
为0的所有行:
In [90]: g.loc[:, 0]
Out[90]:
ID
0 0.827957
1 0.911111
2 0.944954
3 0.884956
4 0.931373
5 0.869048
6 0.941176
7 0.884615
8 0.901961
9 0.930693
Name: isconfirm, dtype: float64
0
中的[:, 0]
是指索引第二级中的值。
因此,您可以使用以下方法找到与前100个值对应的ID
:
In [93]: g.loc[:, 0].sort_values(ascending=False).head(100)
Out[93]:
ID
2 0.944954
6 0.941176
4 0.931373
9 0.930693
1 0.911111
8 0.901961
3 0.884956
7 0.884615
5 0.869048
0 0.827957
Name: isconfirm, dtype: float64
In [94]: g.loc[:, 0].sort_values(ascending=False).head(100).index
Out[94]: Int64Index([2, 6, 4, 9, 1, 8, 3, 7, 5, 0], dtype='int64', name='ID')
为了产生上述结果,我用这种方式定义了g
:
import numpy as np
import pandas as pd
np.random.seed(2017)
N = 1000
dfchurn = pd.DataFrame({'ID':np.random.randint(10, size=N),
'isconfirm': np.random.choice(2, p=[0.9, 0.1], size=N)})
g = dfchurn.groupby('ID')['isconfirm'].value_counts().groupby(level=0).apply(lambda x: x / float(x.sum()))
答案 1 :(得分:0)
我在相关问题中找到了提示:
gdf.unstack(level=1)
gdf = gdf.add_suffix('_ratio').reset_index() # KEY STEP
gdf.columns # friendly columns now
Index([u'ID', u'isconfirm', u'isconfirm_ratio'], dtype='object')
gdf[gdf['isconfirm_ratio'] > 0.999] # e.g. a filter like this works now or a sort