我有一个名为TPN
的功能( R代码位于图片 下方)。运行此功能时,它会生成两个图(见下图)。底行图从顶行图中采样,然后添加 红色回归线。每次运行TPN
函数时,底行图生成一个新的红色回归线。
在底行图中,我想知道每次运行TPN
函数时是否有办法保留以前运行的回归线(参见下面的图片)?
也就是说,每次运行新的TPN
函数时,前一次运行的回归线都会保留在其位置(为了区分目的,可能是“红色”以外的颜色),并且新回归线刚刚添加到他的底行图?
############## Input Values #################
TPN = function( each.sub.pop.n = 150,
sub.pop.means = 20:10,
predict.range = 10:0,
sub.pop.sd = .75,
n.sample = 2 ) {
#############################################
par( mar = c(2, 4.1, 2.1, 2.1) )
m = matrix( c(1, 2), nrow = 2, ncol = 1 ); layout(m)
set.seed(2460986)
Vec.rnorm <- Vectorize(function(n, mean, sd) rnorm(n, mean, sd), 'mean')
y <- c( Vec.rnorm(each.sub.pop.n, sub.pop.means, sub.pop.sd) )
set.seed(NULL)
x <- rep(predict.range, each = each.sub.pop.n)
plot(x, y, ylim = range(y)) ## Top-Row Plot
sample <- lapply(split(y, x), function(z) sample(z, n.sample, replace = TRUE))
sample <- data.frame(y = unlist(sample),
x = as.numeric(rep(names(sample), each = n.sample)))
x = sample$x ; y = sample$y
plot(x, y, ylim = range(y)) #### BOTTOM-ROW PLOT
abline(lm(y ~ x), col = 'red') # Regression Line
}
## TEST HERE:
TPN()
答案 0 :(得分:3)
这并不容易。我做了另一个功能并编辑了第一个功能。
总结我的所作所为:
我做了第一个功能,在它的末尾设置par(new = TRUE)
。此外,将底行图中的点的颜色设置为白色仅用于格式化。如果愿意,你可以摆脱col = 'white', bg = 'white'
。
然后,在第二个函数中,顶行图不会被绘制,并且y轴不会被添加到每个“测试”的底行图中。
看下面:
############## Input Values #################
TPN = function( each.sub.pop.n = 150,
sub.pop.means = 20:10,
predict.range = 10:0,
sub.pop.sd = .75,
n.sample = 2 ) {
#############################################
par( mar = c(2, 4.1, 2.1, 2.1) )
m = matrix( c(1, 2), nrow = 2, ncol = 1 ); layout(m)
set.seed(2460986)
Vec.rnorm <- Vectorize(function(n, mean, sd) rnorm(n, mean, sd), 'mean')
y <- c( Vec.rnorm(each.sub.pop.n, sub.pop.means, sub.pop.sd) )
set.seed(NULL)
x <- rep(predict.range, each = each.sub.pop.n)
par(new = FALSE)
plot(x, y, ylim = range(y)) ## Top-Row Plot
sample <- lapply(split(y, x), function(z) sample(z, n.sample, replace = TRUE))
sample <- data.frame(y = unlist(sample),
x = as.numeric(rep(names(sample), each = n.sample)))
x = sample$x ; y = sample$y
plot(x, y, ylim = range(y), col = 'white', bg = 'white') #### BOTTOM-ROW PLOT
abline(lm(y ~ x), col = 'red') # Regression Line
par(new = TRUE)
}
第二个没有绘制第一行:
############## Input Values #################
TPN2 = function( each.sub.pop.n = 150,
sub.pop.means = 20:10,
predict.range = 10:0,
sub.pop.sd = .75,
n.sample = 2 ) {
#############################################
par( mar = c(2, 4.1, 2.1, 2.1) )
m = matrix( c(1, 2), nrow = 2, ncol = 1 ); layout(m)
set.seed(2460986)
Vec.rnorm <- Vectorize(function(n, mean, sd) rnorm(n, mean, sd), 'mean')
y <- c( Vec.rnorm(each.sub.pop.n, sub.pop.means, sub.pop.sd) )
set.seed(NULL)
x <- rep(predict.range, each = each.sub.pop.n)
#par(new = FALSE) #comment-out
#plot(x, y, ylim = range(y)) ##Top-Row Plot #comment-out
sample <- lapply(split(y, x), function(z) sample(z, n.sample, replace = TRUE))
sample <- data.frame(y = unlist(sample),
x = as.numeric(rep(names(sample), each = n.sample)))
x = sample$x ; y = sample$y
plot(x, y, ylim = range(y), axes = FALSE, col = 'white', bg = 'white') ##BOTTOM-ROW PLOT
abline(lm(y ~ x), col = 'blue') # Regression Line
par(new = TRUE)
}
然后你的测试会是这样的:
## TEST HERE:
TPN()
TPN2()
TPN2()
TPN2()
这是输出:
答案 1 :(得分:2)
执行您想要的操作的一种简单方法是更改主效果(目前无),以返回以前的回归累积和副作用< / em>(绘图)到循环这些先前的回归(蓝色)以及当前的回归(红色)。
另一个提示:您可以使用abline(reg=lm(y~x))
参数,只在列表中累积lm
个对象。没有必要像另一个答案中建议的那样单独存储系数和截距。保留lm
对象也是一个好主意,如果你想回去查看平均R平方等等 - 你不能仅使用系数来做到这一点。
您的新功能可能如下所示:
TPN.accum <- function( each.sub.pop.n = 150,
sub.pop.means = 20:10,
predict.range = 10:0,
sub.pop.sd = .75,
n.sample = 2,
lm.history = list() # the accumulator
){
par( mar = c(2, 4.1, 2.1, 2.1) )
m <- matrix( c(1, 2), nrow = 2, ncol = 1 ); layout(m)
set.seed(2460986)
Vec.rnorm <- Vectorize(function(n, mean, sd) rnorm(n, mean, sd), 'mean')
y <- c( Vec.rnorm(each.sub.pop.n, sub.pop.means, sub.pop.sd) )
set.seed(NULL)
x <- rep(predict.range, each = each.sub.pop.n)
plot(x, y, ylim = range(y)) ### Top-Row Plot
sample <- lapply(split(y, x), function(z) sample(z, n.sample, replace = TRUE))
sample <- data.frame(y = unlist(sample),
x = as.numeric(rep(names(sample), each = n.sample)))
x <- sample$x ; y <- sample$y
lm.current <- lm(y~x) # the current regression
plot(x, y, ylim = range(y)) ### Bottom-Row Plot
abline(reg = lm.current, col = 'red') # plot current regression (red)
for( i in seq_along(lm.history) ){
abline(reg=lm.history[[i]], col='blue') # plot any previous regressions (blue)
}
return(c(lm.history, list(lm.current))) # append current regression to accumulator
}
要初始化它然后重复运行,只需执行以下操作:
tpn.history <- TPN.accum()
for (i in 1:5) tpn.history <- TPN.accum(lm.history=tpn.history)
您的输出将如下所示: