我想在pandas数据框中填充缺失值,并在缺失值之前和之后直接填充单元格的平均值。因此,如果它是[1,NaN,3],那么NaN值将是2,因为(1 + 3)/ 2。我找不到用Pandas或Scikit-learn做任何事情的方法。有没有办法做到这一点?
答案 0 :(得分:4)
考虑此数据框
df = pd.DataFrame({'val': [1,np.nan, 4, 5, np.nan, 10]})
val
0 1.0
1 NaN
2 4.0
3 5.0
4 NaN
5 10.0
您可以使用fillna和shift()来获得所需的输出
df.val = df.val.fillna((df.val.shift() + df.val.shift(-1))/2)
你得到了
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
答案 1 :(得分:2)
如果您没有任何NaN
值作为最后一个索引,这将起作用,这通过您的估算方法暗示为真。
>>> data = pd.DataFrame({'a': [10, 6, -3, -2, 4, 12, 3, 3],
'b': [6, -3, np.nan, 12, 8, 11, -5, -5],
'id': [1, 1, 1, 1, np.nan, 2, 2, 4]})
>>> data
a b id
0 10 6.0 1.0
1 6 -3.0 1.0
2 -3 NaN 1.0
3 -2 12.0 1.0
4 4 8.0 NaN
5 12 11.0 2.0
6 3 -5.0 2.0
7 3 -5.0 4.0
>>> nan_cols = data.columns[data.isnull().any(axis=0)]
>>> for col in nan_cols:
... for i in range(len(data)):
... if pd.isnull(data.loc[i, col]):
... data.loc[i, col] = (data.loc[i-1, col] + data.loc[i+1, col])/2
>>> data
a b id
0 10 6.0 1.0
1 6 -3.0 1.0
2 -3 4.5 1.0
3 -2 12.0 1.0
4 4 8.0 1.5
5 12 11.0 2.0
6 3 -5.0 2.0
7 3 -5.0 4.0
答案 2 :(得分:2)
使用spies006的示例df。
df = pd.DataFrame({'a': [10, 6, -3, -2, 4, 12, 3, 3],
'b': [6, -3, np.nan, 12, 8, 11, -5, -5],
'id': [1, 1, 1, 1, np.nan, 2, 2, 4]})
#use np.where to locate the nans and fill it with the average of surrounding elements.
df.where(df.notnull(), other=(df.fillna(method='ffill')+df.fillna(method='bfill'))/2)
Out[2517]:
a b id
0 10 6.0 1.0
1 6 -3.0 1.0
2 -3 4.5 1.0
3 -2 12.0 1.0
4 4 8.0 1.5
5 12 11.0 2.0
6 3 -5.0 2.0
7 3 -5.0 4.0