如何在Pyomo约束中对逻辑OR或量词进行建模

时间:2017-05-17 16:21:31

标签: python constraints logical-operators pyomo

我正在使用PYOMO,我想在“P_constraint_rule”中实现逻辑OR,但我无法实现。

我的模型中有一些部分:

model.s = Param(within=NonNegativeIntegers)
model.S = RangeSet(1, model.s)
model.f = Param(within=NonNegativeIntegers)
model.F = RangeSet(1, model.f)
model.p = Param(within=NonNegativeIntegers)
model.P = RangeSet(0, model.p)
model.m = Param(within=NonNegativeIntegers)
model.M = RangeSet(1, model.m)
model.g = Param(model.M, default=5.0)
model.b2 = Param(model.F,model.F, within=Binary, default=0)
model.xf1f2 = Var(model.F, model.F, within=Binary)
model.y = Var(model.M, within=Binary)
model.xf = Var(model.F, within=Binary)
model.aff = Param(model.F,model.F, within=NonNegativeIntegers, default=0)

...

model.x = Var(model.index_sfpm, within=Binary)
model.b1 = Param(model.index_sfpm, within=Binary, default=0)


def Obj_rule(model):
    expr = 0.0
    for (s,f,p,m) in model.index_sfpm:
        expr += model.g[m] * model.xf[f] * model.b1[s,f,p,m] * model.x[s,f,p,m]    
    for m in model.M:
        expr += model.g[m] * model.y[m]

    return expr

model.OBJ = Objective(rule=Obj_rule, sense=maximize)


def P_constraint_rule (model, f1, f2):
    expr = 0.0
    for (s,m) in model.index_sm:
        expr += model.b2[f1,f2] * model.xf[f1] * model.b1[s,f1,1,m] * model.x[s,f1,1,m]
        expr += model.xf[f2] * model.b1[s,f2,1,m] * model.x[s,f2,1,m]
  

e.g。在我的.dat:param aff:= 1 7 10

    return expr == model.aff[f1,f2] | expr == 0

model.PConstraint = Constraint(model.index_f1f2, rule=P_constraint_rule)

当我使用“|”时,我收到以下错误:

ERROR: Rule failed when generating expression for constraint PConstraint with index (7, 3):
        TypeError: unsupported operand type(s) for |: 'int' and '_SumExpression' ERROR: Constructing component 'PConstraint' from data=None failed:
        TypeError: unsupported operand type(s) for |: 'int' and '_SumExpression' [    1.72] Pyomo Finished ERROR: Unexpected exception while running model:
        unsupported operand type(s) for |: 'int' and '_SumExpression'

当我使用“||”

ERROR: Unexpected exception while loading model:
        invalid syntax 

当评论该约束时,模型和gurobi运行良好。

有人可以帮我解决这些错误吗?

还有其他可能使用量词吗? 不等式P1.constraint应该对model.index_f1f2有效 方程P2Constraint应该对model.F的2个元素或model.index_f1f2的1个元素有效 像这样的东西:

def P1_constraint_rule (model, f1, f2):
expr = 0.0
for (s,m) in model.index_sm:
    expr += model.b2[f1,f2] * model.xf[f1] * model.b1[s,f1,1,m] * model.x[s,f1,1,m]
    expr += model.xf[f2] * model.b1[s,f2,1,m] * model.x[s,f2,1,m]
return expr <= model.aff[f1,f2]

model.P1Constraint = Constraint(model.index_f1f2, rule=P1_constraint_rule)


def P2_constraint_rule (model, f1, f2):
    expr = 0.0
    for (s,m) in model.index_sm:
        expr += model.b2[f1,f2] * model.xf[f1] * model.b1[s,f1,1,m] * model.x[s,f1,1,m]
        expr += model.xf[f2] * model.b1[s,f2,1,m] * model.x[s,f2,1,m]
        #this equation should be valid for 2 elements of model.F or 1 element of model.index_f1f2
     return expr == model.aff[f1,f2]

model.P2Constraint = Constraint(model.index_f1f2, rule=P2_constraint_rule)

提前谢谢你,拉拉

2 个答案:

答案 0 :(得分:3)

错误是因为您试图指定非代数约束。从概念上讲,以下内容将定义逻辑分离:

expr == model.aff[f1,f2] | expr == 0

针对具体的句法问题:

  • |是二进制OR。它比关系运算符更紧密,因此不会做你想要的。
  • ||无效的Python语法
  • 概念上你想要的是 logical或,它在Python中用or实现。这将是很好的语法支持 - 但是,Pyomo目前不支持它。

您有两个选项来指定这样的约束:或者(1)使用pyomo.gdp扩展名将其指定为析取,然后利用pyomo.gdp中的转换将析取程序放回MIP ,或(2)使用例如Big-M松弛明确地放松分离。要做前者,你需要定义两个析取然后分离:

from pyomo.gdp import *

def P_disjunct_rule (b, f1, f2, i):
    model = b.model()
    expr = 0.0
    for (s,m) in model.index_sm:
        expr += model.b2[f1,f2] * model.xf[f1] * model.b1[s,f1,1,m] * model.x[s,f1,1,m]
        expr += model.xf[f2] * model.b1[s,f2,1,m] * model.x[s,f2,1,m]
    if i:
        return expr == model.aff[f1,f2]
    else:
        return expr == 0
model.PDisjunct = Disjunct(model.index_f1f2, [0,1], rule=P_constraint_rule)

def P_disjunction_rule(m,f1,f2):
    return [ m.PDisjunct[f1,f2,i] for i in [0,1] ]
model.PDisjunction = Disjunction(model.index_f1f2, rule=P_Disjunction_rule)

然后,您需要调用转换以将析取转换回代数约束。注意:转换需要你的Pyomo变量都有下限和上限,或者你需要通过模型上的BigM后缀指定有效的“Big-M”值。你可以:

  • 在Pyomo命令行上指定转换(例如,--transform=gdp.bigm--transform=gdp.chull
  • BuildAction

    中指定转化
    def xfrm(m):
        TransformationFactory('gdp.bigm').apply_to(m)
    model.xfrm = BuildAction(rule=xfrm)
    
  • 显式调用转换作为自定义驱动程序脚本的一部分。

pyomo.gdp的替代方法是自己明确地实现放松。您需要添加一个二进制变量(让我们称之为y),指示析取的哪一侧必须为True,然后使用该二进制变量显式放宽两个析取。从概念上讲,你会转向

expr == model.aff[f1,f2] | expr == 0

expr - model.aff[f1.f2] <= M1 * y
model.aff[f1.f2] - expr <= M2 * y
expr <= M3 * (1-y)
expr >- M4 * (1-y)

请注意,根据expraff的界限,其中一些约束可能是多余的。此外,四个“Big-M”(大常数)可能不一定需要不同,尽管如果你能确定每个M的最小有效值,问题会更好地解决。

答案 1 :(得分:0)

谢谢@jsiirola。

我用Big-M-relaxation实现了约束。它有效。

此外,我简化了expr-和return-statement。

对于每个f(前f1,f2),(model.b [s,f,1,m] * model.x [s,f,1,m])的S和M之和应等于0 OR model.af [f](以前的model.aff [f1,f2])。

model.af [f]也用作绑定M。

## Big-M Relaxation
def P1_constraint_rule (model, f):
    expr = 0
    for (s,m) in model.index_sm:
        expr += model.b[s,f,1,m] * model.x[s,f,1,m]

    return expr <= model.af[f] * model.xf[f]

model.P1Constraint = Constraint(model.F, rule=P1_constraint_rule)


def P2_constraint_rule (model, f):
    expr = 0
    for (s,m) in model.index_sm:
        expr += model.b[s,f,1,m] * model.x[s,f,1,m]

    return expr >= model.af[f] * model.xf[f] 

model.P2Constraint = Constraint(model.F, rule=P2_constraint_rule)


def P3_constraint_rule (model, f):
    expr = 0
    for (s,m) in model.index_sm:
        expr += model.b[s,f,1,m] * model.x[s,f,1,m]

    return expr - model.af[f] <= model.af[f]  * (1- model.xf[f])

model.P3Constraint = Constraint(model.F, rule=P3_constraint_rule)


def P4_constraint_rule (model, f):
    expr = 0
    for (s,m) in model.index_sm:
        expr += model.b[s,f,1,m] * model.x[s,f,1,m]

    return model.af[f] - expr <= model.af[f] * (1- model.xf[f])

model.P4Constraint = Constraint(model.F, rule=P4_constraint_rule)