我有以下两个数据帧:
DF1:
Id
date
2014-03-13 1
2014-03-14 2
2014-03-15 1
DF2:
Id people value
date
2014-03-13 1 A -3.0
2014-03-13 1 B -6.0
2014-03-13 4 C -3.2
2014-03-14 1 A -3.1
2014-03-14 2 B -5.0
2014-03-14 2 C -3.4
2014-03-14 7 D -6.2
2014-03-14 8 E -3.2
2014-03-15 1 A -3.2
2014-03-15 3 B -5.9
我想要做的是根据Id
合并这两个数据框,与索引(date
)一致。
预期结果如下:
Id people value
date
2014-03-13 1 A -3.0
2014-03-13 1 B -6.0
2014-03-14 2 B -5.0
2014-03-14 2 C -3.4
2014-03-15 1 A -3.2
我努力使用merge
和join
,但没有成功。
生成输入的代码如下:
import pandas as pd
dates = [pd.to_datetime('2014-03-13', format='%Y-%m-%d'), pd.to_datetime('2014-03-14', format='%Y-%m-%d'), pd.to_datetime('2014-03-15', format='%Y-%m-%d')]
Ids = [1,2,1]
df1 = pd.DataFrame({'Id': pd.Series(Ids, index=dates)})
df1.index.name = 'date'
dates = [pd.to_datetime('2014-03-13', format='%Y-%m-%d'), pd.to_datetime('2014-03-13', format='%Y-%m-%d'),
pd.to_datetime('2014-03-13', format='%Y-%m-%d'), pd.to_datetime('2014-03-14', format='%Y-%m-%d'),
pd.to_datetime('2014-03-14', format='%Y-%m-%d'),pd.to_datetime('2014-03-14', format='%Y-%m-%d'),
pd.to_datetime('2014-03-14', format='%Y-%m-%d'), pd.to_datetime('2014-03-14', format='%Y-%m-%d'),
pd.to_datetime('2014-03-15', format='%Y-%m-%d'), pd.to_datetime('2014-03-15', format='%Y-%m-%d')]
Ids = [1,1,4,1,2,2,7,8,1,3]
peoples = ['A','B','C','A','B','C','D','E','A','B']
values = [-3,-6,-3.2,-3.1,-5,-3.4,-6.2,-3.2,-3.2,-5.9]
df2 = pd.DataFrame({'Id': pd.Series(Ids, index=dates),
'people': pd.Series(peoples, index=dates),
'value': pd.Series(values, index=dates)})
df2.index.name = 'date'
答案 0 :(得分:1)
最简单的是merge
+ reset_index
:
df = pd.merge(df1.reset_index(), df2.reset_index(), on=['date','Id']).set_index('date')
print (df)
date Id people value
2014-03-13 1 A -3.0
2014-03-13 1 A -6.0
2014-03-14 2 B -5.0
2014-03-14 2 A -3.4
2014-03-15 1 F -3.2
还有:
df = pd.merge(df1.set_index('Id', append=True),
df2.set_index('Id', append=True),
left_index=True,
right_index=True)
print (df)
people value
date Id
2014-03-13 1 A -3.0
1 A -6.0
2014-03-14 2 B -5.0
2 A -3.4
2014-03-15 1 F -3.2