我有这样的数据:
df = sqlContext.createDataFrame([
('1986/10/15', 'z', 'null'),
('1986/10/15', 'z', 'null'),
('1986/10/15', 'c', 'null'),
('1986/10/15', 'null', 'null'),
('1986/10/16', 'null', '4.0')],
('low', 'high', 'normal'))
我想计算low
列与2017-05-02
之间的日期差异,并用差异替换low
列。我已经在stackoverflow上尝试了相关的解决方案,但它们都不起作用。
答案 0 :(得分:21)
您需要将列low
投射到课程日期,然后您可以将datediff()
与lit()
结合使用。使用 Spark 2.2 :
from pyspark.sql.functions import datediff, to_date, lit
df.withColumn("test",
datediff(to_date(lit("2017-05-02")),
to_date("low","yyyy/MM/dd"))).show()
+----------+----+------+-----+
| low|high|normal| test|
+----------+----+------+-----+
|1986/10/15| z| null|11157|
|1986/10/15| z| null|11157|
|1986/10/15| c| null|11157|
|1986/10/15|null| null|11157|
|1986/10/16|null| 4.0|11156|
+----------+----+------+-----+
使用< Spark 2.2 ,我们需要先将low
列转换为类timestamp
:
from pyspark.sql.functions import datediff, to_date, lit, unix_timestamp
df.withColumn("test",
datediff(to_date(lit("2017-05-02")),
to_date(unix_timestamp('low', "yyyy/MM/dd").cast("timestamp")))).show()
答案 1 :(得分:3)
或者,如何使用pySpark查找两次后续用户操作之间经过的天数:
import pyspark.sql.functions as funcs
from pyspark.sql.window import Window
window = Window.partitionBy('user_id').orderBy('action_date')
df = df.withColumn("days_passed", funcs.datediff(df.action_date,
lag(df.action_date, 1).over(window)))
+----------+-----------+-----------+
| user_id|action_date|days_passed|
+----------+-----------+-----------+
|623 |2015-10-21| null|
|623 |2015-11-19| 29|
|623 |2016-01-13| 59|
|623 |2016-01-21| 8|
|623 |2016-03-24| 63|
+----------+----------+------------+