如何使用列之间的映射“重新排列”pandas数据框?

时间:2017-05-17 07:53:06

标签: python pandas dataframe

我是熊猫和数据框架的新手,所以我希望这不是一个太基本的问题。

假设我(外部)合并了两个数据帧并获得了以下内容:

     date_a  symbol_a  value_a  type_a symbol_b  date_b  value_b  type_b    total
0    yymmdd    AAAA       10       W    AAAA     yymmdd     2        S        12
1    yymmdd    BBBB        5       W    BBBB     yymmdd     2        S         7
2    yymmdd    CCCC       12       W     NaN        NaN     NaN     NaN      NaN
3    yymmdd    DDDD       15       W     NaN        NaN     NaN     NaN      NaN
4     NaN       NaN      NaN      NaN   EEEE     yymmdd      5       S       NaN
5     NaN       NaN      NaN      NaN   FFFF     yymmdd     10       S       NaN
6     NaN       NaN      NaN      NaN   GGGG     yymmdd      2       S       NaN
到目前为止,这是我想要的(日期都是同一天)。

现在假设我有一条规则告诉我我有一个映射(字典):

mapper = {'EEEE':'CCCC', 'FFFF':'DDDD'}

我的symbol_b可能没有映射到任何symbol_a(如上面的索引6)。

我的问题是,是否可以根据字典给出的映射重新排列行,以便得到:

     date_a  symbol_a  value_a  type_a symbol_b  date_b  value_b  type_b    total
0    yymmdd    AAAA       10       W    AAAA     yymmdd     2        S        12
1    yymmdd    BBBB        5       W    BBBB     yymmdd     2        S         7
2    yymmdd    CCCC       12       W    EEEE     yymmdd     5        S        17
3    yymmdd    DDDD       15       W    FFFF     yymmdd     10       S        25
6     NaN       NaN      NaN      NaN   GGGG     yymmdd      2       S       NaN

理想情况下,我还要删除包含NaN元素的所有行,以便最终结果为:

     date_a  symbol_a  value_a  type_a symbol_b  date_b  value_b  type_b    total
0    yymmdd    AAAA       10       W    AAAA     yymmdd     2        S        12
1    yymmdd    BBBB        5       W    BBBB     yymmdd     2        S         7
2    yymmdd    CCCC       12       W    EEEE     yymmdd     5        S        17
3    yymmdd    DDDD       15       W    FFFF     yymmdd     10       S        25

1 个答案:

答案 0 :(得分:1)

因此,我将您的数据框拆分为原始的2个数据框,只需更改数据框中的列名称即可符合您的使用情况:

import pandas as pd

a = pd.read_csv('test.csv')

#Split your merge df into 2 original df
del a['total']
df1 = a.loc[:, ['date_a', 'symbol_a', 'value_a', 'type_a']]
df2 = a.loc[:, ['date_b', 'symbol_b', 'value_b', 'type_b']]

df1.fillna('', inplace=True)
df2.fillna('', inplace=True)

df1 = df1[df1['date_a']!='']
df2 = df2[df2['date_b']!='']

#Add a mapping column to df2
mapper = {'EEEE':'CCCC', 'FFFF':'DDDD'}

df2['mapping'] = df2['symbol_b'].apply(lambda x: mapper.get(x) if mapper.get(x)!= None else x)

df1 = df1.merge(df2, left_on='symbol_a', right_on='mapping')
df1['total'] = df1['value_a'] + df1['value_b']
df1

df1中的结果现在是:

    date_a  symbol_a    value_a type_a  date_b  symbol_b    value_b type_b  mapping total
0   yymmdd  AAAA        10.0    W       yymmdd  AAAA        2.0     S       AAAA    12.0
1   yymmdd  BBBB        5.0     W       yymmdd  BBBB        2.0     S       BBBB    7.0
2   yymmdd  CCCC        12.0    W       yymmdd  EEEE        5.0     S       CCCC    17.0
3   yymmdd  DDDD        15.0    W       yymmdd  FFFF        10.0    S       DDDD    25.0