我有一个像这样的pandas数据框:
COMMIT_ID | FILE_NAME | COMMITTER | CHANGE TYPE
-------------------------------------------------------------
1 | package.json | A | MODIFY
2 | main.js | B | ADD
2 | class.java | B | DELETE
我想将文件名的行值作为列标题,将changetype作为值。
COMMIT_ID | package.json | main.js | class.java | COMMITTER
-----------------------------------------------------------------------------
1 | MODIFY | NONE | NONE | A
2 | NONE | ADD | DELETE | B
我尝试过pandas.pivot_table
,但并不是很成功。有机会轻松做到这一点吗?
答案 0 :(得分:3)
df = df.set_index(['COMMIT_ID','COMMITTER','FILE_NAME'])['CHANGE TYPE']
.unstack()
.reset_index()
print (df)
FILE_NAME COMMIT_ID COMMITTER class.java main.js package.json
0 1 A None None MODIFY
1 2 B DELETE ADD None
使用pivot_table
的解决方案 - 需要聚合函数,如sum
(不带分隔符的连接字符串)或'_'.join
(如果重复,则将字符串与分隔符连接起来):
print (df)
COMMIT_ID FILE_NAME COMMITTER CHANGE TYPE
0 1 package.json A MODIFY
1 2 main.js B ADD
2 2 class.java B DELETE
3 2 class.java B ADD
df = df.pivot_table(index=['COMMIT_ID','COMMITTER'],
columns='FILE_NAME',
values='CHANGE TYPE',
aggfunc='sum').reset_index()
print (df)
FILE_NAME COMMIT_ID COMMITTER class.java main.js package.json
0 1 A None None MODIFY
1 2 B DELETEADD ADD None
或者:
df = df.pivot_table(index=['COMMIT_ID','COMMITTER'],
columns='FILE_NAME',
values='CHANGE TYPE',
aggfunc='_'.join).reset_index()
print (df)
FILE_NAME COMMIT_ID COMMITTER class.java main.js package.json
0 1 A None None MODIFY
1 2 B DELETE_ADD ADD None
与first
聚合也有效,但您可以丢失重复值:
df = df.pivot_table(index=['COMMIT_ID','COMMITTER'],
columns='FILE_NAME',
values='CHANGE TYPE',
aggfunc='first').reset_index()
print (df)
FILE_NAME COMMIT_ID COMMITTER class.java main.js package.json
0 1 A None None MODIFY
1 2 B DELETE ADD None
最后一次重命名列名称添加rename_axis
:
df = df.rename_axis(None, axis=1)
print (df)
COMMIT_ID COMMITTER class.java main.js package.json
0 1 A None None MODIFY
1 2 B DELETEADD ADD None