在下面的main
方法中,
第一:我试图通过a.copy()
和b.copy()
作为参数。虽然solve_linear_equations
方法返回了有效的解决方案,但它仍然会篡改原始参数a[][]
和b[]
。
第二:然后,我尝试将两个不同的变量定义为tmp_a = a.copy()
和tmp_b = b.copy()
。使用这些新变量作为方法参数也无济于事:通常,该方法会篡改原始数组值a[][]
和b[]
。
我认为,有一些关于Python内部的棘手问题我无法实现。任何人都能伸出援手吗?
import random
def data_create(n):
a, x, b = [], [], []
for i in range(n):
a.append([])
s = random.randint(0, 2)
x.append(random.randint(0, 1000) / 1000)
if s:
x[i] *= -1
for j in range(n):
s = random.randint(0, 2)
a[i].append(random.randint(0, 1000) / 1000)
if s:
a[i][j] *= -1
for i in range(n):
b.append(0.0)
for j in range(n):
b[i] += a[i][j] * x[j]
return a, x, b
def solve_linear_equations(n, a, x):
for i in range(n - 1):
max_row = i
max_val = abs(a[i][i])
for j in range(i + 1, n):
if abs(a[j][i]) > max_val:
max_val = abs(a[j][i])
max_row = j
if max_row != i:
x[i], x[max_row] = x[max_row], x[i]
a[i], a[max_row] = a[max_row].copy(), a[i].copy()
x[i] /= a[i][i]
for j in range(i + 1, n):
a[i][j] /= a[i][i]
a[i][i] = 1.0
for j in range(i + 1, n):
x[j] -= x[i] * a[j][i]
for k in range(i + 1, n):
a[j][k] -= a[i][k] * a[j][i]
a[j][i] = 0.0
x[n - 1] /= a[n - 1][n - 1]
a[n - 1][n - 1] = 1.0
for i in range(n - 1, 0, -1):
for j in range(i - 1, -1, -1):
x[j] -= x[i] * a[j][i]
for k in range(i, n):
a[j][k] -= a[i][k] * a[j][i]
return x
def main():
n = 3
a, x, b = data_create(n)
print("x\n", x)
print("a\n", a)
print("b\n", b, "\n")
tmp_a = a.copy() # creating a copy of a[][]
tmp_b = b.copy() # creating a copy of b[]
print("tmp_a\n", tmp_a)
print("tmp_b\n", tmp_b, "\n")
print("x\n", solve_linear_equations(n, tmp_a, tmp_b))
print("a\n", a)
print("b\n", b, "\n")
if __name__ == "__main__":
main()
答案 0 :(得分:4)
而不是
tmp_a = a.copy() # creating a copy of a[][]
tmp_b = b.copy() # creating a copy of b[]
DO
import copy
...
tmp_a = copy.deepcopy(a) # creating a deep copy of a[][]
tmp_b = copy.deepcopy(b) # creating a deep copy of b[]
这是因为list.copy()
只降低了一级,你看到两个级别的不需要的更改。