我正在制作一台计算机,使用softmax函数预测来自MNist数据集的手写数字。还有一些奇怪的事发生了。成本随着时间的推移而逐渐减少并最终变成0.0038左右......(我使用softmax_crossentropy_with_logits()作为成本函数)但是,准确率相当低至33%。所以我想“好吧......我不知道那里发生了什么,但如果我分别做softmax和crossentropy,它可能会产生不同的结果!”和繁荣!准确率上升到89%。我不知道为什么分别做softmax和crossentropy会产生不同的结果。我甚至在这里查了一下:difference between tensorflow tf.nn.softmax and tf.nn.softmax_cross_entropy_with_logits
所以这是我使用softmax_cross_entropy_with_logits()作为代价函数的代码(准确度:33%)
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
X = tf.placeholder(shape=[None,784],dtype=tf.float32)
Y = tf.placeholder(shape=[None,10],dtype=tf.float32)
W1= tf.Variable(tf.random_normal([784,20]))
b1= tf.Variable(tf.random_normal([20]))
layer1 = tf.nn.softmax(tf.matmul(X,W1)+b1)
W2 = tf.Variable(tf.random_normal([20,10]))
b2 = tf.Variable(tf.random_normal([10]))
logits = tf.matmul(layer1,W2)+b2
hypothesis = tf.nn.softmax(logits) # just so I can figure our the accuracy
cost_i= tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=Y)
cost = tf.reduce_mean(cost_i)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
batch_size = 100
train_epoch = 25
display_step = 1
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(train_epoch):
av_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)
for batch in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optimizer,feed_dict={X:batch_xs,Y:batch_ys})
av_cost += sess.run(cost,feed_dict={X:batch_xs,Y:batch_ys})/total_batch
if epoch % display_step == 0: # Softmax
print ("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(av_cost))
print ("Optimization Finished!")
correct_prediction = tf.equal(tf.argmax(hypothesis,1),tf.argmax(Y,1))
accuray = tf.reduce_mean(tf.cast(correct_prediction,'float32'))
print("Accuracy:",sess.run(accuray,feed_dict={X:mnist.test.images,Y:mnist.test.labels}))
这是我分别做softmax和cross_entr的那个(准确度:89%)
import tensorflow as tf #89 % accuracy one
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
X = tf.placeholder(shape=[None,784],dtype=tf.float32)
Y = tf.placeholder(shape=[None,10],dtype=tf.float32)
W1= tf.Variable(tf.random_normal([784,20]))
b1= tf.Variable(tf.random_normal([20]))
layer1 = tf.nn.softmax(tf.matmul(X,W1)+b1)
W2 = tf.Variable(tf.random_normal([20,10]))
b2 = tf.Variable(tf.random_normal([10]))
#logits = tf.matmul(layer1,W2)+b2
#cost_i= tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=Y)
logits = tf.matmul(layer1,W2)+b2
hypothesis = tf.nn.softmax(logits)
cost = tf.reduce_mean(tf.reduce_sum(-Y*tf.log(hypothesis)))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
batch_size = 100
train_epoch = 25
display_step = 1
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(train_epoch):
av_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)
for batch in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optimizer,feed_dict={X:batch_xs,Y:batch_ys})
av_cost += sess.run(cost,feed_dict={X:batch_xs,Y:batch_ys})/total_batch
if epoch % display_step == 0: # Softmax
print ("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(av_cost))
print ("Optimization Finished!")
correct_prediction = tf.equal(tf.argmax(hypothesis,1),tf.argmax(Y,1))
accuray = tf.reduce_mean(tf.cast(correct_prediction,'float32'))
print("Accuracy:",sess.run(accuray,feed_dict={X:mnist.test.images,Y:mnist.test.labels}))
答案 0 :(得分:2)
如果您在上部示例中使用tf.reduce_sum()
,就像在较低示例中使用cost = tf.reduce_mean(tf.reduce_sum( tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y)))
一样,您应该能够使用这两种方法获得类似的结果:tf.nn.softmax_cross_entropy_with_logits()
。
我将训练时期的数量增加到50并且达到了93.06%({{1}})和93.24%(softmax和交叉熵分别)的准确度,因此结果非常相似。
答案 1 :(得分:2)