在Teradata SQL中,如何为在8秒的时间间隔内创建的记录组分配相同的行号。
实施例: -
Customerid Customername Itembought dateandtime
(yyy-mm-dd hh:mm:ss)
100 ALex Basketball 2017-02-10 10:10:01
100 ALex Circketball 2017-02-10 10:10:06
100 ALex Baseball 2017-02-10 10:10:08
100 ALex volleyball 2017-02-10 10:11:01
100 ALex footbball 2017-02-10 10:11:05
100 ALex ringball 2017-02-10 10:11:08
100 Alex football 2017-02-10 10:12:10
我的预期结果应该包含Row_number的附加列,它应该在8秒内为客户的所有购买分配相同的数字:请参阅以下预期结果
Customerid Customername Itembought dateandtime Row_number
(yyy-mm-dd hh:mm:ss)
100 ALex Basketball 2017-02-10 10:10:01 1
100 ALex Circketball 2017-02-10 10:10:06 1
100 ALex Baseball 2017-02-10 10:10:08 1
100 ALex volleyball 2017-02-10 10:11:01 2
100 ALex footbball 2017-02-10 10:11:05 2
100 ALex ringball 2017-02-10 10:11:08 2
100 Alex football 2017-02-10 10:12:10 3
答案 0 :(得分:0)
这是使用递归cte执行此操作的一种方法。当它获得>时,重置上一行的时间戳的差异的运行总和。 8到0并开始一个新的小组。
WITH ROWNUMS AS
(SELECT T.*
,ROW_NUMBER() OVER(PARTITION BY ID ORDER BY TM) AS RNUM
/*Replace DATEDIFF with Teradata specific function*/
,DATEDIFF(SECOND,COALESCE(MIN(TM) OVER(PARTITION BY ID
ORDER BY TM ROWS BETWEEN 1 PRECEDING AND CURRENT ROW), TM),TM) AS DIFF
FROM T --replace this with your tablename and add columns as required
)
,RECURSIVE CTE(ID,TM,DIFF,SUM_DIFF,RNUM,GRP) AS
(SELECT ID,
TM,
DIFF,
DIFF,
RNUM,
CAST(1 AS int)
FROM ROWNUMS
WHERE RNUM=1
UNION ALL
SELECT T.ID,
T.TM,
T.DIFF,
CASE WHEN C.SUM_DIFF+T.DIFF > 8 THEN 0 ELSE C.SUM_DIFF+T.DIFF END,
T.RNUM,
CAST(CASE WHEN C.SUM_DIFF+T.DIFF > 8 THEN T.RNUM ELSE C.GRP END AS int)
FROM CTE C
JOIN ROWNUMS T ON T.RNUM=C.RNUM+1 AND T.ID=C.ID
)
SELECT ID,
TM,
DENSE_RANK() OVER(PARTITION BY ID ORDER BY GRP) AS row_num
FROM CTE
答案 1 :(得分:0)
使用Teradata的PERIOD数据类型和令人敬畏的td_normalize_overlap_meet:
考虑表test32
:
SELECT * FROM test32
+----+----+------------------------+
| f1 | f2 | f3 |
+----+----+------------------------+
| 1 | 2 | 2017-05-11 03:59:00 PM |
| 1 | 3 | 2017-05-11 03:59:01 PM |
| 1 | 4 | 2017-05-11 03:58:58 PM |
| 1 | 5 | 2017-05-11 03:59:26 PM |
| 1 | 2 | 2017-05-11 03:59:28 PM |
| 1 | 2 | 2017-05-11 03:59:46 PM |
+----+----+------------------------+
以下内容将对您的记录进行分组:
WITH
normalizedCTE AS
(
SELECT *
FROM TABLE
(
td_normalize_overlap_meet(NEW VARIANT_TYPE(periodCTE.f1), periodCTE.fper)
RETURNS (f1 integer, fper PERIOD(TIMESTAMP(0)), recordCount integer)
HASH BY f1
LOCAL ORDER BY f1, fper
) as output(f1, fper, recordcount)
),
periodCTE AS
(
SELECT f1, f2, f3, PERIOD(f3, f3 + INTERVAL '9' SECOND) as fper FROM test32
)
SELECT t2.f1, t2.f2, t2.f3, t1.fper, DENSE_RANK() OVER (PARTITION BY t2.f1 ORDER BY t1.fper) as fgroup
FROM normalizedCTE t1
INNER JOIN periodCTE t2 ON
t1.fper P_INTERSECT t2.fper IS NOT NULL
结果:
+----+----+------------------------+-------------+
| f1 | f2 | f3 | fgroup |
+----+----+------------------------+-------------+
| 1 | 2 | 2017-05-11 03:59:00 PM | 1 |
| 1 | 3 | 2017-05-11 03:59:01 PM | 1 |
| 1 | 4 | 2017-05-11 03:58:58 PM | 1 |
| 1 | 5 | 2017-05-11 03:59:26 PM | 2 |
| 1 | 2 | 2017-05-11 03:59:28 PM | 2 |
| 1 | 2 | 2017-05-11 03:59:46 PM | 3 |
+----+----+------------------------+-------------+
Teradata中的Period
是一种特殊数据类型,它包含日期或日期时间范围。第一个参数是范围的开始,第二个参数是结束时间(最多但不包括,这是为什么它是“+ 9秒”)。结果是我们获得了8秒的“时间段”,其中每条记录可能与另一条记录“相交”。
然后我们使用td_normalize_overlap_meet
合并相交的记录,共享f1
字段的值作为键。在你的情况下,customerid
。结果是这一个客户的三条记录,因为我们有三个组“重叠”或“相互”相互的时间段。
然后我们将td_normalize_overlap_meet输出与我们确定周期时的输出结合起来。我们使用P_INTERSECT
函数来查看归一化CTE INTERSECT中哪些时段与初始时段CTE中的时段。从P_INTERSECT
连接的结果中,我们从每个CTE中获取所需的值。
最后,Dense_Rank()
根据每个群组的标准化时间段为我们提供排名。
答案 2 :(得分:0)
我将以与vkp不同的方式解释问题。另一行8秒内的任何行应该在同一组中。这些值可以链接在一起,因此总跨度可以超过8秒。
这种方法的优点是不需要递归CTE,所以它应该更快。 (当然,如果OP不同意该定义,这不是一个优势。)
基本思路是查看上一个日期/时间值;如果距离超过8秒,则添加一个标志。标志的累积总和是您要查找的行号。
select t.*,
sum(case when prev_dt >= dateandtime - interval '8' second
then 0 else 1
end) over (partition by customerid order by dateandtime
) as row_number
from (select t.*,
max(dateandtime) over (partition by customerid order by dateandtime row between 1 preceding and 1 preceding) as prev_dt
from t
) t;