我正在使用以下代码绘制一些数据的均值和方差的变化
import matplotlib.pyplot as pyplot
import numpy
vis_mv(data, ax = None):
if ax is None: ax = pyplot.gca()
cmap = pyplot.get_cmap()
colors = cmap(numpy.linspace(0, 1, len(data)))
xs = numpy.arange(len(data)) + 1
means = numpy.array([ numpy.mean(x) for x in data ])
varis = numpy.array([ numpy.var(x) for x in data ])
vlim = max(1, numpy.amax(varis))
# variance
ax.imshow([[0.,1.],[0.,1.]],
cmap = cmap, interpolation = 'bicubic',
extent = (1, len(data), -vlim, vlim), aspect = 'auto'
)
ax.fill_between(xs, -vlim, -varis, color = 'white')
ax.fill_between(xs, varis, vlim, color = 'white')
# mean
ax.plot(xs, means, color = 'white', zorder = 1)
ax.scatter(xs, means, color = colors, edgecolor = 'white', zorder = 2)
return ax
这很好用: 但现在我希望能够以垂直方式使用这种可视化作为某种高级颜色条旁边另一个情节的东西。我希望可以用它的所有内容旋转整个轴, 但是我只能找到this question,但它还没有真正的答案。因此,我尝试按照以下方式自行完成:
from matplotlib.transforms import Affine2D
ax = vis_mv()
r = Affine2D().rotate_deg(90) + ax.transData
for x in ax.images + ax.lines + ax.collections:
x.set_transform(r)
old = ax.axis()
ax.axis(old[2:4] + old[0:2])
这个几乎可以解决这个问题(请注意以前沿着白线放置的散点是如何被炸毁而不是按预期旋转)。
不幸的是,持有PathCollection
ing结果的scatter
没有按预期行事。在尝试了一些事情后,我发现散射有某种偏移变换,这似乎相当于其他集合中的常规变换。
x = numpy.arange(5)
ax = pyplot.gca()
p0, = ax.plot(x)
p1 = ax.scatter(x,x)
ax.transData == p0.get_transform() # True
ax.transData == p1.get_offset_transform() # True
似乎我可能想要为散点图更改偏移变换,但我没有设法找到允许我在PathCollection
上更改变换的任何方法。而且,这样做会使我真正想做的事情变得更加不方便。
有人知道是否有可能改变偏移变换?
提前致谢
答案 0 :(得分:4)
不幸的是,PathCollection
没有.set_offset_transform()
方法,但可以访问私有_transOffset
属性并将旋转变换设置为它。
import matplotlib.pyplot as plt
from matplotlib.transforms import Affine2D
from matplotlib.collections import PathCollection
import numpy as np; np.random.seed(3)
def vis_mv(data, ax = None):
if ax is None: ax = plt.gca()
cmap = plt.get_cmap()
colors = cmap(np.linspace(0, 1, len(data)))
xs = np.arange(len(data)) + 1
means = np.array([ np.mean(x) for x in data ])
varis = np.array([ np.var(x) for x in data ])
vlim = max(1, np.amax(varis))
# variance
ax.imshow([[0.,1.],[0.,1.]],
cmap = cmap, interpolation = 'bicubic',
extent = (1, len(data), -vlim, vlim), aspect = 'auto' )
ax.fill_between(xs, -vlim, -varis, color = 'white')
ax.fill_between(xs, varis, vlim, color = 'white')
# mean
ax.plot(xs, means, color = 'white', zorder = 1)
ax.scatter(xs, means, color = colors, edgecolor = 'white', zorder = 2)
return ax
data = np.random.normal(size=(9, 9))
ax = vis_mv(data)
r = Affine2D().rotate_deg(90)
for x in ax.images + ax.lines + ax.collections:
trans = x.get_transform()
x.set_transform(r+trans)
if isinstance(x, PathCollection):
transoff = x.get_offset_transform()
x._transOffset = r+transoff
old = ax.axis()
ax.axis(old[2:4] + old[0:2])
plt.show()