ValueError:无法将形状(2,224,224,3)的输入数组广播为形状(2,224,224)

时间:2017-05-09 08:35:12

标签: image-processing tensorflow prediction

TensorFlow - 如何使用不同测试数据集上的训练模型进行预测?我正在进行图像分割。预测输出具有不同的维度,给我带来了困难。任何帮助..

def main(argv=None):
    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image")
    annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")

    pred_annotation, logits = inference(image, keep_probability)
    tf.summary.image("input_image", image, max_outputs=2)
    tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2)
    tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
    loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                                          labels=tf.squeeze(annotation, squeeze_dims=[3]),
                                                                          name="entropy")))
    tf.summary.scalar("entropy", loss)

    trainable_var = tf.trainable_variables()
    if FLAGS.debug:
        for var in trainable_var:
            utils.add_to_regularization_and_summary(var)
    train_op = train(loss, trainable_var)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()

    print("Setting up image reader...")
    train_records, valid_records, test_records= scene_parsing.read_dataset(FLAGS.data_dir)
    print(len(train_records))
    print(len(valid_records))
    print(len(test_records))

    print("Setting up dataset reader")
    image_options = {'resize': True, 'resize_size': IMAGE_SIZE}
    if FLAGS.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records, image_options)
        validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)
        test_dataset_reader = dataset.BatchDatset(test_records, image_options)
    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver()
    summary_writer = tf.summary.FileWriter(FLAGS.logs_dir, sess.graph)

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")


    if FLAGS.mode == "train":
        for itr in xrange(MAX_ITERATION):
            train_images, train_annotations = train_dataset_reader.next_batch(FLAGS.batch_size)
            feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.85}

            sess.run(train_op, feed_dict=feed_dict)

            if itr % 10 == 0:
                train_loss, summary_str = sess.run([loss, summary_op], feed_dict=feed_dict)
                print("Step: %d, Train_loss:%g" % (itr, train_loss))
                summary_writer.add_summary(summary_str, itr)

            if itr % 100 == 0:
                valid_images, valid_annotations = validation_dataset_reader.next_batch(FLAGS.batch_size)
                valid_loss = sess.run(loss, feed_dict={image: valid_images, annotation: valid_annotations,
                                                       keep_probability: 1.0})
                print("%s ---> Validation_loss: %g" % (datetime.datetime.now(), valid_loss))
                saver.save(sess, FLAGS.logs_dir + "model.ckpt", itr)



    elif FLAGS.mode == "predict":

        predict_dataset_reader = dataset.BatchDatset(train_records, image_options)
        test_images = predict_dataset_reader.get_random_batch(FLAGS.batch_size)
        pred = sess.run(pred_annotation, feed_dict={image: test_images, 
                                                    keep_probability: 1.0})
        #test_annotations = np.squeeze(test_annotations, axis=3)
        pred = np.squeeze(pred, axis=3)

        for itr in range(FLAGS.batch_size):
            utils.save_image(test_images[itr].astype(np.uint8), FLAGS.logs_dir, name="inp_" + str(20+itr))
            utils.save_image(pred[itr].astype(np.uint8), FLAGS.logs_dir, name="pred_" + str(20+itr))
            print("Saved image: %d" % itr)        
if __name__ == "__main__":
    tf.app.run()

错误在“预测” “train”完美无缺。

enter image description here

0 个答案:

没有答案