我有以下数据框:
library(tidyverse)
set.seed(1)
df <- data_frame(
genes = paste("Gene_",letters[0:10],sep=""),
X = abs(rnorm(10, 0, 1)),
Y = abs(rnorm(10, 0, 2)),
Z = abs(rnorm(10, 0, 4)))
df
#> # A tibble: 10 × 4
#> genes X Y Z
#> <chr> <dbl> <dbl> <dbl>
#> 1 Gene_a 0.6264538 3.02356234 3.6759095
#> 2 Gene_b 0.1836433 0.77968647 3.1285452
#> 3 Gene_c 0.8356286 1.24248116 0.2982599
#> 4 Gene_d 1.5952808 4.42939977 7.9574068
#> 5 Gene_e 0.3295078 2.24986184 2.4793030
#> 6 Gene_f 0.8204684 0.08986722 0.2245150
#> 7 Gene_g 0.4874291 0.03238053 0.6231820
#> 8 Gene_h 0.7383247 1.88767242 5.8830095
#> 9 Gene_i 0.5757814 1.64244239 1.9126002
#> 10 Gene_j 0.3053884 1.18780264 1.6717662
这个估计上面每个非基因列的参数:
alldf <- structure(list(var = c("X", "Y", "Z", "X", "Y", "Z"), mod_est_mean = c(0.649790620181318,
1.65651567796795, 2.78544973796179, -0.594317687136244, -0.116217058012966,
0.518234267967891), mod_est_sd = c(0.37898907459421, 1.27340261798159, 2.38265470031565,
0.583177003946691, 1.49404482354149, 1.14803152575931), logLik = c(-4.48690631961252,
-16.6063107770219, -22.8715381956973, -2.85356316184894, -17.0420856382274,
-20.7522156015569), dist_name = c("normal", "normal", "normal", "lognormal",
"lognormal", "lognormal")), .Names = c("var", "mod_est_mean", "mod_est_sd",
"logLik", "dist_name"), row.names = c(NA, -6L), class = c("tbl_df", "tbl",
"data.frame"))
alldf
#> var mod_est_mean mod_est_sd logLik dist_name
#> 1 X 0.6497906 0.3789891 -4.486906 normal
#> 2 Y 1.6565157 1.2734026 -16.606311 normal
#> 3 Z 2.7854497 2.3826547 -22.871538 normal
#> 4 X -0.5943177 0.5831770 -2.853563 lognormal
#> 5 Y -0.1162171 1.4940448 -17.042086 lognormal
#> 6 Z 0.5182343 1.1480315 -20.752216 lognormal
我想要做的是为X,Y,Z创建构面图。每个方面包含3行(实际数据,正常拟合,对数正态拟合)。
我只能为X
做这件事#Plot just one distribution (df$X)
x <- df$X
den <- density(x)
df_x <- data.frame(x = den$x, y = den$y)
df_x
norm_param <- alldf %>% filter(var=="X", dist_name=="normal")
lognorm_param <- alldf %>% filter(var=="X", dist_name=="lognormal")
ggplot(df_x, aes(x = x,y = y)) +
geom_point(size = 3) +
geom_line(aes(x=df_x$x, y=dnorm(x=df_x$x, mean=norm_param$mod_est_mean, sd=norm_param$mod_est_sd) ), color="red", size = 1) +
geom_line(aes(x=df_x$x, y=dnorm(x=log(df_x$x), mean=lognorm_param$mod_est_mean, sd=lognorm_param$mod_est_sd) ), color="blue", size = 1) +
theme_classic()
# And how can I include legend for 3 lines?
黑色(实际数据),红色(正常拟合),蓝色(对数正态拟合)
但我怎么能为facet做到这一点?
答案 0 :(得分:2)
这是一种方法。基本上,您希望尽可能将一个长数据帧传递给ggplot
。从数据中创建长数据框。我将在此处lapply
对alldf
的每一行进行计算,以获得您想要的3个独立数据集,用它们代表的内容标记它们,然后将这些数据集绑定到一个长数据集中之一。
df <- lapply( X = seq_len( nrow( alldf ) ),
FUN = function(x) {
df <- data.frame(
x = df_x$x,
y = df_x$y
)
if( alldf$dist_name[x] == "normal" ) {
df$d_norm <- dnorm( x = df_x$x, mean = alldf$mod_est_mean[x], sd = alldf$mod_est_sd[x] )
} else if( alldf$dist_name[x] == "lognormal" ) {
df$d_norm <- dnorm( x = log( df_x$x ), mean = alldf$mod_est_mean[x], sd = alldf$mod_est_sd[x] )
}
df$var <- alldf$var[x]
df$dist_name <- alldf$dist_name[x]
df
} )
df <- do.call( rbind, df )
head( df )
x y d_norm var dist_name
1 -0.3642300 0.002889036 0.02936093 X normal
2 -0.3593232 0.003142633 0.03039330 X normal
3 -0.3544164 0.003412660 0.03145670 X normal
4 -0.3495096 0.003697873 0.03255185 X normal
5 -0.3446028 0.004015857 0.03367948 X normal
6 -0.3396959 0.004349725 0.03484033 X normal
现在您已经获得了一些整洁的数据,您可以将其传递给ggplot
,告诉它根据dist_name
制作颜色,并将其作为aes
。 }参数,并通过facet
volumn值告诉var
(在本例中为&#34;列&#34;&#34; grid&#34;)
ggplot( df ) +
geom_point( aes( x = x, y = y ), size = 3 ) +
geom_line( aes( x = x, y = d_norm, col = dist_name ), size = 1 ) +
theme_classic() +
facet_grid( . ~ var )
答案 1 :(得分:0)
晚了几年,但万一有人来这里寻找如何做到这一点,以下工作:
library(dplyr)
library(tidyr)
library(ggplot2)
df %>%
pivot_longer(where(is.numeric)) %>%
ggplot(aes(value))+
geom_density(aes(color = 'emprical'), size = 1)+
stat_function(fun = ~ dnorm(.x,
MASS::fitdistr(.x, 'normal')$estimate[[1]],
MASS::fitdistr(.x, 'normal')$estimate[[2]]),
aes(color = 'Normal'))+
stat_function(fun = ~ dlnorm(.x,
MASS::fitdistr(.x, 'log-normal')$estimate[[1]],
MASS::fitdistr(.x, 'log-normal')$estimate[[2]]),
aes(color = 'Log-Normal'))+
theme_minimal()+
facet_wrap(name~., scale = 'free')