我试图在R中绘制直方图,并用不同分布的密度覆盖它。它适用于常规直方图,但我无法使用ggplot2包。
a <- dataset$age
现在遵循常规直方图的代码:
Histogram_for_age <- hist(a, prob=T, xlim=c(0,80), ylim=c(0,0.055), main="Histogram for age with density lines", xlab="age")
mean <- mean(a)
sd <- sd(a)
现在是密度的线/曲线:
lines(density(dataset$age), col="blue", lwd=2, lty=1)
curve(dnorm(x, mean = mean, sd = sd), add = T, col="red", lwd=2, lty=2)
curve(dgamma(x, shape =mean^2/sd^2, scale = sd^2/mean), add = T, col="goldenrod", lwd=2, lty=3)
和一个传奇:
legend("topright",
c("actual distribution of age","gaussian distribution", "gamma distribution"),
lty=c(1,2,3),
lwd=c(2,2,2),col=c("blue","red","goldenrod"), cex=0.65)
这是我到目前为止尝试使用ggplot2的方法:
ggplot(dataset, aes(x=age)) +
geom_histogram(aes(y=..density..),
colour="black", fill="white") +
geom_density(alpha=.2, fill="lightblue") + stat_function(fun = dgamma, shape=shape)
什么ggplot2参数等同于我的lines()和curve()参数?
答案 0 :(得分:4)
使用stat_density
代替geom_density
,如下所示:
ggplot(dataset, aes(x=age)) +
geom_histogram(aes(y=..density..), colour="black", fill="white") +
stat_density(colour="blue", geom="line", position="identity") +
stat_function(fun=dnorm, args=list(mean=mean(dataset_with_victims$TV_Alter), sd=sd(dataset_with_victims$TV_Alter))) +
stat_function(fun=dgamma, args=list(shape=mean(dataset_with_victims$TV_Alter)^2/sd(dataset_with_victims$TV_Alter)^2, scale=sd(dataset_with_victims$TV_Alter)^2/mean(dataset_with_victims$TV_Alter)))