使用ggplot在直方图上绘制不同的分布

时间:2014-04-28 07:39:51

标签: r ggplot2 histogram curve density-plot

我试图在R中绘制直方图,并用不同分布的密度覆盖它。它适用于常规直方图,但我无法使用ggplot2包。

a <- dataset$age

现在遵循常规直方图的代码:

Histogram_for_age <- hist(a, prob=T, xlim=c(0,80), ylim=c(0,0.055), main="Histogram for age with density lines", xlab="age") 

mean <- mean(a)
sd <- sd(a)

现在是密度的线/曲线:

lines(density(dataset$age), col="blue", lwd=2, lty=1)
curve(dnorm(x, mean = mean, sd = sd), add = T, col="red", lwd=2, lty=2)
curve(dgamma(x, shape =mean^2/sd^2, scale = sd^2/mean), add = T, col="goldenrod", lwd=2, lty=3) 

和一个传奇:

legend("topright", 
    c("actual distribution of age","gaussian distribution", "gamma distribution"),  
   lty=c(1,2,3),  
   lwd=c(2,2,2),col=c("blue","red","goldenrod"), cex=0.65) 

这是我到目前为止尝试使用ggplot2的方法:

ggplot(dataset, aes(x=age)) + 
geom_histogram(aes(y=..density..),
             colour="black", fill="white") +
geom_density(alpha=.2, fill="lightblue") + stat_function(fun = dgamma, shape=shape)

什么ggplot2参数等同于我的lines()和curve()参数?

1 个答案:

答案 0 :(得分:4)

使用stat_density代替geom_density,如下所示:

ggplot(dataset, aes(x=age)) + 
  geom_histogram(aes(y=..density..), colour="black", fill="white") +
  stat_density(colour="blue", geom="line", position="identity") +
  stat_function(fun=dnorm, args=list(mean=mean(dataset_with_victims$TV_Alter), sd=sd(dataset_with_victims$TV_Alter))) + 
  stat_function(fun=dgamma, args=list(shape=mean(dataset_with_victims$TV_Alter)^2/sd(dataset_with_victims$TV_Alter)^2, scale=sd(dataset_with_victims$TV_Alter)^2/mean(dataset_with_victims$TV_Alter)))