我想在输出层添加新节点以便以后训练它,我正在做:
def add_outputs(self, n_new_outputs):
out = self.model.get_layer('fc8').output
last_layer = self.model.get_layer('fc7').output
out2 = Dense(n_new_outputs, activation='softmax', name='fc9')(last_layer)
output = merge([out, out2], mode='concat')
self.model = Model(input=self.model.input, output=output)
其中'fc7'
是输出图层'fc8'
之前的完全连接图层。我考虑只使用out = self.model.get_layer('fc8').output
的最后一层,但输出是所有模型。
有没有办法从网络中获取一个图层?
也许还有其他更容易的方法......
感谢!!!!
答案 0 :(得分:0)
最后我找到了解决方案:
1)从最后一层获得权重
2)在权重中添加零并随机初始化它的连接
3)弹出输出图层并创建一个新的
4)为新图层设置新权重
这里是代码:
def add_outputs(self, n_new_outputs):
#Increment the number of outputs
self.n_outputs += n_new_outputs
weights = self.model.get_layer('fc8').get_weights()
#Adding new weights, weights will be 0 and the connections random
shape = weights[0].shape[0]
weights[1] = np.concatenate((weights[1], np.zeros(n_new_outputs)), axis=0)
weights[0] = np.concatenate((weights[0], -0.0001 * np.random.random_sample((shape, n_new_outputs)) + 0.0001), axis=1)
#Deleting the old output layer
self.model.layers.pop()
last_layer = self.model.get_layer('batchnormalization_1').output
#New output layer
out = Dense(self.n_outputs, activation='softmax', name='fc8')(last_layer)
self.model = Model(input=self.model.input, output=out)
#set weights to the layer
self.model.get_layer('fc8').set_weights(weights)
print(weights[0])