我使用slim.conv2d
设置VGG-net
with slim.arg_scope([slim.conv2d, slim.max_pool2d], padding='SAME'):
conv1_1 = slim.conv2d(img, 64, [3, 3], scope='conv1')
conv1_2 = slim.conv2d(conv1_1, 64, [3, 3], scope='conv1_1')
pool1 = slim.max_pool2d(conv1_2, [2, 2], 2, scope='pool1_2')
conv2_1 = slim.conv2d(pool1, 128, [3, 3], 1, scope='conv2_1')
conv2_2 = slim.conv2d(conv2_1, 128, [3, 3], 1, scope='conv2_2')
pool2 = slim.max_pool2d(conv2_2, [2, 2], 2, scope='pool2')
conv3_1 = slim.conv2d(pool2, 256, [3, 3], 1, scope='conv3_1')
conv3_2 = slim.conv2d(conv3_1, 256, [3, 3], 1, scope='conv3_2')
conv3_3 = slim.conv2d(conv3_2, 256, [3, 3], 1, scope='conv3_3')
pool3 = slim.max_pool2d(conv3_3, [2, 2], 2, scope='pool3')
conv4_1 = slim.conv2d(pool3, 512, [3, 3], scope='conv4_1')
# print conv4_1.shape
conv4_2 = slim.conv2d(conv4_1, 512, [3, 3], scope='conv4_2')
conv4_3 = slim.conv2d(conv4_2, 512, [3, 3], scope='conv4_3') # 38
如果我想从现有的VGG模型中初始化conv1
或conv2
的变量。
我该怎么办?
答案 0 :(得分:2)
您也可以按照此处的建议使用assign_from_values: Github - Initialize layers.convolution2d from numpy array
sess = tf.Session()
with sess.as_default():
init = tf.global_variables_initializer()
sess.run(init)
path = pathlib.Path('./assets/classifier_weights.npz')
if(path.is_file()):
print("Initilize Weights from Numpy Array")
init_weights = np.load(path)
assign_op, feed_dict_init = slim.assign_from_values({
'conv1/weights' : init_weights['conv1_w'],
})
sess.run(assign_op, feed_dict_init)
答案 1 :(得分:0)
我假设你有一个现有VGG模型的检查点。
使用TF Slim执行此操作的一种方法是从检查点还原,但指定检查点中的变量名称与模型中的变量之间的自定义映射。请参阅此处的评论:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/learning.py#L146
答案 2 :(得分:0)
我用tf.nn.conv2d(输入,内核......)替换了slim.conv2d,其中内核是使用tf.get_variable创建的,并使用tf.assign分配。