python和excel给出了回归的不同p值

时间:2017-05-06 00:02:30

标签: python excel

在python中我编写了一个代码来查找回归线。检查我是否得到了正确答案我采用相同的数据并在excel中进行分析。 Python和excel给出了完全不同的答案。

Excel

SUMMARY OUTPUT                              

Regression Statistics                               
Multiple R  0.023593671                         
R Square    0.000556661                         
Adjusted R Square   0.000156243                         
Standard Error  1.604474556                         
Observations    4995                            

ANOVA                               
    df  SS  MS  F   Significance F          
Regression  2   7.15769381  3.578846905 1.390200537 0.249121754         
Residual    4992    12851.0983  2.574338601                 
Total   4994    12858.25599                     

    Coefficients    Standard Error  t Stat  P-value Lower 95%   Upper 95%   Lower 95.0% Upper 95.0%
Intercept   -0.09101004 0.0657058   -1.385114257    0.166079424 -0.219822273    0.037802193 -0.219822273    0.037802193
X Variable 1    -0.009415268    0.005841859 -1.611690408    0.107092543 -0.020867879    0.002037342 -0.020867879    0.002037342
X Variable 2    0.196164884 0.119696592 1.638851034 0.101307304 -0.038493021    0.430822789 -0.038493021    0.430822789

的Python

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.000
Model:                            OLS   Adj. R-squared:                 -0.000
Method:                 Least Squares   F-statistic:                    0.5089
Date:                Fri, 05 May 2017   Prob (F-statistic):              0.601
Time:                        18:45:37   Log-Likelihood:                -9448.7
No. Observations:                4995   AIC:                         1.890e+04
Df Residuals:                    4993   BIC:                         1.891e+04
Df Model:                           2                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1             0.0408      0.042      0.977      0.329        -0.041     0.123
x2            -0.0027      0.003     -0.829      0.407        -0.009     0.004
==============================================================================
Omnibus:                      968.343   Durbin-Watson:                   1.689
Prob(Omnibus):                  0.000   Jarque-Bera (JB):            15355.200
Skew:                          -0.470   Prob(JB):                         0.00
Kurtosis:                      11.538   Cond. No.                         16.8
==============================================================================




xxx = np.column_stack((x1_bucket,x_bucket))    
results = sm.OLS(y_bucket, xxx).fit()   
print results.summary()

有人知道为什么会这样吗?

0 个答案:

没有答案