我是Spark流媒体的新手。我想要实现的是从kafka读取json字符串数据,将其存储在DStream中并将其转换为Dataset以便能够将其加载到Elasticsearch中。我正在使用此post中的部分代码。
这是实际代码:
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.streaming.StreamingQuery;
import org.apache.spark.sql.streaming.StreamingQueryException;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import org.apache.spark.api.java.function.Function;
import kafka.serializer.StringDecoder;
import scala.Tuple2;
public class SparkConsumer {
public static void main(String[] args) throws InterruptedException {
SparkConf conf = new SparkConf().setAppName("readKafkajson").setMaster("local[*]");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaStreamingContext ssc = new JavaStreamingContext(sc, new Duration(2000));
// TODO: processing pipeline
Map<String, String> kafkaParams = new HashMap<String, String>();
kafkaParams.put("metadata.broker.list", "localhost:9092");
Set<String> topics = Collections.singleton("kafkajson");
JavaPairInputDStream<String, String> directKafkaStream =
KafkaUtils.createDirectStream(ssc, String.class, String.class, StringDecoder.class,
StringDecoder.class, kafkaParams, topics);
JavaDStream<String> json = directKafkaStream.map(new Function<Tuple2<String,String>, String>() {
public String call(Tuple2<String,String> message) throws Exception {
System.out.println(message._2());
return message._2();
};
});
System.out.println(" json is 0------ 0"+ json);
json.foreachRDD(rdd -> {
rdd.foreach(
record -> System.out.println(record));
});
//Create JavaRDD<Row>
json.foreachRDD(new VoidFunction<JavaRDD<String>>() {
@Override
public void call(JavaRDD<String> rdd) {
JavaRDD<Row> rowRDD = rdd.map(new Function<String, Row>() {
@Override
public Row call(String msg) {
Row row = RowFactory.create(msg);
return row;
}
});
//Create Schema
StructType schema = DataTypes.createStructType(new StructField[] {DataTypes.createStructField("Message", DataTypes.StringType, true)});
//Get Spark 2.0 session
SparkSession spark = **JavaSparkSessionSingleton**.getInstance(rdd.context().getConf());
Dataset<Row> msgDataFrame = spark.createDataFrame(rowRDD, schema);
msgDataFrame.show();
}
});
ssc.start();
ssc.awaitTermination();
}
}
我收到一条错误消息,指出无法解析符号JavaSparkSessionSingleton。
我正在使用Spark 2.0.1,我的maven依赖项看起来像这样:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.0.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.0.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.11</artifactId>
<version>1.6.3</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.0.1</version>
</dependency>
<dependency>
我不确定我错过了什么。任何帮助表示赞赏。
答案 0 :(得分:0)
正式的Spark文档会引导您创建一个Singleton类来保存您的会话,将其添加到您的类的底部:
class JavaSparkSessionSingleton {
private static transient SparkSession instance = null;
public static SparkSession getInstance(SparkConf sparkConf) {
if (instance == null) {
instance = SparkSession
.builder()
.config(sparkConf)
.getOrCreate();
}
return instance;
}
}
来自Spark doc的示例,完整示例:https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/streaming/JavaSqlNetworkWordCount.java