我有两个数据框,每个数据框都有关于具有开始和结束时间的事件的信息。问题是这两个数据帧具有不同的开始和结束时间,因为它们测量的是不同的东西。我想做的小麦是创造新事件,其中包含两者的信息。必须根据两个数据帧之间的任何分割来拆分这些。例如:
Dataframe A:
Start End
2016-12-30 18:51:00 2016-12-30 19:37:00
2016-12-30 20:03:00 2016-12-30 20:11:00
2016-12-30 20:12:00 2016-12-30 21:02:00
2016-12-30 21:02:00 2016-12-30 21:04:00
2016-12-30 21:10:00 2016-12-30 21:12:00
2016-12-30 21:12:00 2016-12-30 21:32:00
数据框B:
Start End
2016-12-30 18:33:45 2016-12-30 19:18:00
2016-12-30 19:18:00 2016-12-30 19:38:00
2016-12-30 19:38:00 2016-12-30 19:48:00
2016-12-30 19:48:00 2016-12-30 20:15:45
2016-12-30 20:15:45 2016-12-30 20:35:45
2016-12-30 20:35:45 2016-12-30 20:45:45
2016-12-30 20:45:45 2016-12-30 21:14:30
2016-12-30 21:14:30 2016-12-30 21:35:00
对于这些,理想的输出是:
Start End
2016-12-30 18:51:00 2016-12-30 19:18:00
2016-12-30 19:18:00 2016-12-30 19:37:00
2016-12-30 20:03:00 2016-12-30 20:11:00
2016-12-30 20:12:00 2016-12-30 20:15:45
2016-12-30 20:15:45 2016-12-30 20:35:45
2016-12-30 20:35:45 2016-12-30 20:45:45
2016-12-30 20:45:45 2016-12-30 21:12:00
2016-12-30 21:12:00 2016-12-30 21:14:30
2016-12-30 21:14:30 2016-12-30 21:32:00
有几种方法我知道如何做到这一点。我可以将数据帧分解为分钟级别,并在几分钟内合并,但问题是每个数据帧是200万+行,这将是一个非常漫长的过程。
我也有SQL可以做到这一点但是当我试图运行它时,它花了太长时间,DBA杀死了这个过程。
SQL的作用是:
select
a.UNIQUE_ID,
a,
b,
c,
d,
CASE WHEN B.START < A.START THEN A.START
ELSE B.START END START,
CASE WHEN B.END > A.END THEN A.END
ELSE B.END END END
from
(Select
UNIQUE_ID,
START,
END,
a,
b,
from table_1
)a
join
(
UNIQUE_ID,
Select
START,
END,
c,
d
from table_2) b
on 1=1
AND A.UNIQUE_ID = B.UNIQUE_ID
AND ((b.START between a.START and a.END)
or (b.end between a.START and a.END)
or (b.START < a.START and b.end > a.end)
or (a.START < b.START and a.end > b.end)
)
) a
这为该unique_id包含至少一个相同分钟的开始,结束时间的每个成对组合创建一行。然后,它使用case语句将每行减少到共享分钟。
我无法想到使用Pandas在python中复制此SQL的有效方法。我在pandas中知道的唯一合并函数必须具有相同的列才能合并,它们不能像我使用的连接一样。
pandas中是否有一种类型的合并我可以用来做类似的事情:
AND ((b.START between a.START and a.END)
or (b.end between a.START and a.END)
or (b.START < a.START and b.end > a.end)
or (a.START < b.START and a.end > b.end)
)
我能想到的唯一选择是循环遍历df中的每一行切片将另一个数据帧返回到DF b的那一行中只有几分钟的行,然后在这两个切片上合并并将所有这些合并连接到一起一个新的DF,但这需要很长时间。
感谢任何帮助。
答案 0 :(得分:0)
我将使用我为question编写的实现,该实现与您的内容类似:
import pandas as pd
df_a = pd.DataFrame({'Start': ['2016-12-30 18:51:00',
'2016-12-30 20:03:00',
'2016-12-30 20:12:00',
'2016-12-30 21:02:00',
'2016-12-30 21:10:00',
'2016-12-30 21:12:00'],
'End': ['2016-12-30 19:37:00',
'2016-12-30 20:11:00',
'2016-12-30 21:02:00',
'2016-12-30 21:04:00',
'2016-12-30 21:12:00',
'2016-12-30 21:32:00']})
df_b = pd.DataFrame({'Start': ['2016-12-30 18:33:45',
'2016-12-30 19:18:00',
'2016-12-30 19:38:00',
'2016-12-30 19:48:00',
'2016-12-30 20:15:45',
'2016-12-30 20:35:45',
'2016-12-30 20:45:45',
'2016-12-30 21:14:30'],
'End': ['2016-12-30 19:18:00',
'2016-12-30 19:38:00',
'2016-12-30 19:48:00',
'2016-12-30 20:15:45',
'2016-12-30 20:35:45',
'2016-12-30 20:45:45',
'2016-12-30 21:14:30',
'2016-12-30 21:35:00']})
# Convert the strings to datetime
df_a['Start'] = pd.to_datetime(df_a['Start'], format='%Y-%m-%d %H:%M:%S')
df_a['End'] = pd.to_datetime(df_a['End'], format='%Y-%m-%d %H:%M:%S')
df_b['Start'] = pd.to_datetime(df_b['Start'], format='%Y-%m-%d %H:%M:%S')
df_b['End'] = pd.to_datetime(df_b['End'], format='%Y-%m-%d %H:%M:%S')
# Create labels for the two datasets
# These labels will help determine the overlaps downstream
df_a['Label'] = 'a'
df_b['Label'] = 'b'
# With the labels created, I can concatenate the dataframes now
df_concat = pd.concat([df_a, df_b])
df_concat = df_concat[['Label', 'Start', 'End']] # Ordering the columns
# Convert the dataframe to a list of tuples
df_concat_rec = df_concat.to_records(index=False)
# Here's where I'm using my answer that I had used in the other question
timelist_new = []
for time in df_concat_rec:
timelist_new.append((time[0], time[1], 'begin'))
timelist_new.append((time[0], time[2], 'end'))
timelist_new = sorted(timelist_new, key=lambda x: x[1])
key = None
keylist = set()
aggregator = []
for idx in range(len(timelist_new[:-1])):
t1 = timelist_new[idx]
t2 = timelist_new[idx + 1]
t1_key = str(t1[0])
t2_key = str(t2[0])
t1_dt = t1[1]
t2_dt = t2[1]
t1_pointer = t1[2]
t2_pointer = t2[2]
if t1_dt == t2_dt:
keylist.add(t1_key)
keylist.add(t2_key)
elif t1_dt < t2_dt:
if t1_pointer == 'begin':
keylist.add(t1_key)
if t1_pointer == 'end':
keylist.discard(t1_key)
key = ','.join(sorted(keylist))
aggregator.append((key, t1_dt, t2_dt))
# This is where I filter out any records where there isn't an overlap and where the start and end dates are equal
filtered = [x for x in aggregator if ((len(x[0]) > 1) & (x[1] != x[2]))]
# Convert the list of tuples back to dataframe
final_df = pd.DataFrame.from_records(filtered, columns=['Label', 'Start', 'End'])
# Print final dataframe
print(final_df)
<强>输出:强>
Label Start End
0 a,b 2016-12-30 18:51:00 2016-12-30 19:18:00
1 a,b 2016-12-30 19:18:00 2016-12-30 19:37:00
2 a,b 2016-12-30 20:03:00 2016-12-30 20:11:00
3 a,b 2016-12-30 20:12:00 2016-12-30 20:15:45
4 a,b 2016-12-30 20:15:45 2016-12-30 20:35:45
5 a,b 2016-12-30 20:35:45 2016-12-30 20:45:45
6 a,b 2016-12-30 20:45:45 2016-12-30 21:02:00
7 a,b 2016-12-30 21:02:00 2016-12-30 21:04:00
8 a,b 2016-12-30 21:10:00 2016-12-30 21:12:00
9 a,b 2016-12-30 21:12:00 2016-12-30 21:14:30
10 a,b 2016-12-30 21:14:30 2016-12-30 21:32:00