我有两个输入数据框,第一个叫做“Firms_Ind”,包含多行的2列(“Firms”,“Industry”)。它为每个公司提供行业ID。另一个被称为“ann_returns”,它具有与“Firms_Ind”一样多的列具有行和多行。它包含每年(行)每个公司(列)的回报。
我想计算每个行业的年平均回报率。所以我想要一个输出矩阵,它具有以下维度:列数=年数和行数=年数。对于每个行业(列),应计算每年的平均收益。
这是一个小例子:
> Firms_Ind
Firms Industry
1 A 1
2 B 2
3 C 3
4 D 1
5 E 2
6 F 1
> ann_returns
A B C D E F
y1 0.20 0.11 0.13 0.30 0.24 0.03
y2 0.23 0.08 0.03 0.23 0.17 0.01
y3 0.28 0.19 0.11 0.21 0.19 0.07
> Industry_mean
1 2 3
y1_means 0.20 0.11 0.13
y2_means 0.23 0.08 0.03
y3_means 0.28 0.19 0.11
答案 0 :(得分:1)
以下是sapply
# get a list of firms by industry
inds <- split(Firms_Ind$Firms, Firms_Ind$Industry)
# loop through industries to calculate annual means
myMat <- sapply(inds,
function(i) if(length(i) > 1) rowMeans(ann_returns[, i]) else ann_returns[, i])
在这里,sapply
遍布各个行业。对于每个行业,检查是否有多家公司,如果是,则应用rowMeans
,如果不是,则返回原始值。
返回
myMat
1 2 3
y1 0.1766667 0.175 0.13
y2 0.1566667 0.125 0.03
y3 0.1866667 0.190 0.11
数据强>
Firms_Ind <-
structure(list(Firms = structure(1:6, .Label = c("A", "B", "C",
"D", "E", "F"), class = "factor"), Industry = c(1L, 2L, 3L, 1L,
2L, 1L)), .Names = c("Firms", "Industry"), class = "data.frame", row.names = c("1",
"2", "3", "4", "5", "6"))
ann_returns <-
structure(c(0.2, 0.23, 0.28, 0.11, 0.08, 0.19, 0.13, 0.03, 0.11,
0.3, 0.23, 0.21, 0.24, 0.17, 0.19, 0.03, 0.01, 0.07), .Dim = c(3L,
6L), .Dimnames = list(c("y1", "y2", "y3"), c("A", "B", "C", "D",
"E", "F")))
答案 1 :(得分:1)
使用location.search
和dplyr
tidyr
答案 2 :(得分:1)
我们可以按行拆分ann_returns
,然后运行rowMeans
:
# if Firms in correct order
inds <- split.default(ann_returns, f = Firms_Ind$Industry)
# # if Firms not in correct order:
# inds <- split.default(
# ann_returns,
# f = Firms_Ind$Industry[match(colnames(ann_returns), Firms_Ind$Firms)])
do.call(cbind, lapply(inds,rowMeans))
# 1 2 3
# y1 0.1766667 0.175 0.13
# y2 0.1566667 0.125 0.03
# y3 0.1866667 0.190 0.11
两个输入data.frames是:
# > dput(ann_returns)
structure(list(A = c(0.2, 0.23, 0.28), B = c(0.11, 0.08, 0.19
), C = c(0.13, 0.03, 0.11), D = c(0.3, 0.23, 0.21), E = c(0.24,
0.17, 0.19), F = c(0.03, 0.01, 0.07)), .Names = c("A", "B", "C",
"D", "E", "F"), row.names = c("y1", "y2", "y3"), class = "data.frame")
# > dput(Firms_Ind)
structure(list(Firms = structure(1:6, .Label = c("A", "B", "C",
"D", "E", "F"), class = "factor"), Industry = c(1L, 2L, 3L, 1L,
2L, 1L)), .Names = c("Firms", "Industry"), class = "data.frame", row.names = c("1",
"2", "3", "4", "5", "6"))