如何使用Keras在TensorBoard中显示自定义图像?

时间:2017-05-04 13:56:45

标签: tensorflow keras deep-learning tensorboard

我正在研究Keras中的分段问题,我想在每个训练时代结束时显示分段结果。

我想要类似Tensorflow: How to Display Custom Images in Tensorboard (e.g. Matplotlib Plots)的东西,但是使用Keras。我知道Keras有TensorBoard回调,但看起来似乎有限。

我知道这会破坏Keras的后端抽象,但无论如何我对使用TensorFlow后端感兴趣。

是否可以通过Keras + TensorFlow实现这一目标?

8 个答案:

答案 0 :(得分:20)

因此,以下解决方案对我有用:

import tensorflow as tf

def make_image(tensor):
    """
    Convert an numpy representation image to Image protobuf.
    Copied from https://github.com/lanpa/tensorboard-pytorch/
    """
    from PIL import Image
    height, width, channel = tensor.shape
    image = Image.fromarray(tensor)
    import io
    output = io.BytesIO()
    image.save(output, format='PNG')
    image_string = output.getvalue()
    output.close()
    return tf.Summary.Image(height=height,
                         width=width,
                         colorspace=channel,
                         encoded_image_string=image_string)

class TensorBoardImage(keras.callbacks.Callback):
    def __init__(self, tag):
        super().__init__() 
        self.tag = tag

    def on_epoch_end(self, epoch, logs={}):
        # Load image
        img = data.astronaut()
        # Do something to the image
        img = (255 * skimage.util.random_noise(img)).astype('uint8')

        image = make_image(img)
        summary = tf.Summary(value=[tf.Summary.Value(tag=self.tag, image=image)])
        writer = tf.summary.FileWriter('./logs')
        writer.add_summary(summary, epoch)
        writer.close()

        return

tbi_callback = TensorBoardImage('Image Example')

只需将回调传递给fitfit_generator

请注意,您还可以使用回调内的model运行某些操作。例如,您可以在某些图像上运行模型以检查其性能。

screen

答案 1 :(得分:4)

基于上述答案和我自己的搜索,我提供以下代码来使用Keras中的TensorBoard完成以下操作:


  • 问题设置:预测双目立体匹配中的视差图;
  • 使用输入的左图像x和地面真实视差图gt来填充模型;
  • 在某个迭代时间显示输入x和地面真理'gt';
  • 在某个迭代时间显示模型的输出y

  1. 首先,您必须使用Callback来制作服装化的回调类。 Note表示回调可以通过类属性self.model访问其关联的模型。另外Note如果要获取并显示模型的输出,则必须使用feed_dict将输入提供给模型。

    from keras.callbacks import Callback
    import numpy as np
    from keras import backend as K
    import tensorflow as tf
    import cv2
    
    # make the 1 channel input image or disparity map look good within this color map. This function is not necessary for this Tensorboard problem shown as above. Just a function used in my own research project.
    def colormap_jet(img):
        return cv2.cvtColor(cv2.applyColorMap(np.uint8(img), 2), cv2.COLOR_BGR2RGB)
    
    class customModelCheckpoint(Callback):
        def __init__(self, log_dir='./logs/tmp/', feed_inputs_display=None):
              super(customModelCheckpoint, self).__init__()
              self.seen = 0
              self.feed_inputs_display = feed_inputs_display
              self.writer = tf.summary.FileWriter(log_dir)
    
        # this function will return the feeding data for TensorBoard visualization;
        # arguments:
        #  * feed_input_display : [(input_yourModelNeed, left_image, disparity_gt ), ..., (input_yourModelNeed, left_image, disparity_gt), ...], i.e., the list of tuples of Numpy Arrays what your model needs as input and what you want to display using TensorBoard. Note: you have to feed the input to the model with feed_dict, if you want to get and display the output of your model. 
        def custom_set_feed_input_to_display(self, feed_inputs_display):
              self.feed_inputs_display = feed_inputs_display
    
        # copied from the above answers;
        def make_image(self, numpy_img):
              from PIL import Image
              height, width, channel = numpy_img.shape
              image = Image.fromarray(numpy_img)
              import io
              output = io.BytesIO()
              image.save(output, format='PNG')
              image_string = output.getvalue()
              output.close()
              return tf.Summary.Image(height=height, width=width, colorspace= channel, encoded_image_string=image_string)
    
    
        # A callback has access to its associated model through the class property self.model.
        def on_batch_end(self, batch, logs = None):
              logs = logs or {} 
              self.seen += 1
              if self.seen % 200 == 0: # every 200 iterations or batches, plot the costumed images using TensorBorad;
                  summary_str = []
                  for i in range(len(self.feed_inputs_display)):
                      feature, disp_gt, imgl = self.feed_inputs_display[i]
                      disp_pred = np.squeeze(K.get_session().run(self.model.output, feed_dict = {self.model.input : feature}), axis = 0)
                      #disp_pred = np.squeeze(self.model.predict_on_batch(feature), axis = 0)
                      summary_str.append(tf.Summary.Value(tag= 'plot/img0/{}'.format(i), image= self.make_image( colormap_jet(imgl)))) # function colormap_jet(), defined above;
                      summary_str.append(tf.Summary.Value(tag= 'plot/disp_gt/{}'.format(i), image= self.make_image( colormap_jet(disp_gt))))
                      summary_str.append(tf.Summary.Value(tag= 'plot/disp/{}'.format(i), image= self.make_image( colormap_jet(disp_pred))))
    
                  self.writer.add_summary(tf.Summary(value = summary_str), global_step =self.seen)
    
  2. 接下来,将此回调对象传递给模型的fit_generator(),例如:

       feed_inputs_4_display = some_function_you_wrote()
       callback_mc = customModelCheckpoint( log_dir = log_save_path, feed_inputd_display = feed_inputs_4_display)
       # or 
       callback_mc.custom_set_feed_input_to_display(feed_inputs_4_display)
       yourModel.fit_generator(... callbacks = callback_mc)
       ...
    
  3. 现在,您可以运行代码,并转到TensorBoard主机以查看装饰图像显示。例如,这就是我使用上述代码得到的:enter image description here


    完成!享受吧!

答案 2 :(得分:2)

类似地,您可能想尝试tf-matplotlib。这是散点图

import tensorflow as tf
import numpy as np

import tfmpl

@tfmpl.figure_tensor
def draw_scatter(scaled, colors): 
    '''Draw scatter plots. One for each color.'''  
    figs = tfmpl.create_figures(len(colors), figsize=(4,4))
    for idx, f in enumerate(figs):
        ax = f.add_subplot(111)
        ax.axis('off')
        ax.scatter(scaled[:, 0], scaled[:, 1], c=colors[idx])
        f.tight_layout()

    return figs

with tf.Session(graph=tf.Graph()) as sess:

    # A point cloud that can be scaled by the user
    points = tf.constant(
        np.random.normal(loc=0.0, scale=1.0, size=(100, 2)).astype(np.float32)
    )
    scale = tf.placeholder(tf.float32)        
    scaled = points*scale

    # Note, `scaled` above is a tensor. Its being passed `draw_scatter` below. 
    # However, when `draw_scatter` is invoked, the tensor will be evaluated and a
    # numpy array representing its content is provided.   
    image_tensor = draw_scatter(scaled, ['r', 'g'])
    image_summary = tf.summary.image('scatter', image_tensor)      
    all_summaries = tf.summary.merge_all() 

    writer = tf.summary.FileWriter('log', sess.graph)
    summary = sess.run(all_summaries, feed_dict={scale: 2.})
    writer.add_summary(summary, global_step=0)

执行时,会在Tensorboard中生成以下图表

请注意, tf-matplotlib 负责评估任何张量输入,避免pyplot线程问题并支持运行时关键绘图的blitting。

答案 3 :(得分:0)

我相信我找到了一种更好的方法,可以使用tf-matplotlib将此类自定义图像记录到张量板上。这是...

class TensorBoardDTW(tf.keras.callbacks.TensorBoard):
    def __init__(self, **kwargs):
        super(TensorBoardDTW, self).__init__(**kwargs)
        self.dtw_image_summary = None

    def _make_histogram_ops(self, model):
        super(TensorBoardDTW, self)._make_histogram_ops(model)
        tf.summary.image('dtw-cost', create_dtw_image(model.output))

只需覆盖TensorBoard回调类中的_make_histogram_ops方法即可添加自定义摘要。就我而言,create_dtw_image是使用tf-matplotlib创建图像的函数。

此致。

答案 4 :(得分:0)

以下是在图像上绘制界标的示例:

class CustomCallback(keras.callbacks.Callback):
    def __init__(self, model, generator):
        self.generator = generator
        self.model = model

    def tf_summary_image(self, tensor):
        import io
        from PIL import Image

        tensor = tensor.astype(np.uint8)

        height, width, channel = tensor.shape
        image = Image.fromarray(tensor)
        output = io.BytesIO()
        image.save(output, format='PNG')
        image_string = output.getvalue()
        output.close()
        return tf.Summary.Image(height=height,
                             width=width,
                             colorspace=channel,
                             encoded_image_string=image_string)

    def on_epoch_end(self, epoch, logs={}):
        frames_arr, landmarks = next(self.generator)

        # Take just 1st sample from batch
        frames_arr = frames_arr[0:1,...]

        y_pred = self.model.predict(frames_arr)

        # Get last frame for which we have done predictions
        img = frames_arr[0,-1,:,:]

        img = img * 255
        img = img[:, :, ::-1]
        img = np.copy(img)

        landmarks_gt = landmarks[-1].reshape(-1,2)
        landmarks_pred = y_pred.reshape(-1,2)

        img = draw_landmarks(img, landmarks_gt, (0,255,0))
        img = draw_landmarks(img, landmarks_pred, (0,0,255))

        image = self.tf_summary_image(img)
        summary = tf.Summary(value=[tf.Summary.Value(image=image)])
        writer = tf.summary.FileWriter('./logs')
        writer.add_summary(summary, epoch)
        writer.close()
        return

答案 5 :(得分:0)

我正试图在张量板上显示matplotlib图(在绘制统计数据,热图等情况下很有用)。也可以用于一般情况。

select userid, name, timein, timeout,
       datediff(minute, timein, timeout) / 60.0 as hours_worked
from (select t.*,
             lead(timeout) over (partition by userid order by coalesce(timein, timeout)) as timeout
      from (select t.*,
                   lag(iotype) over (partition by userid order by coalesce(timein, timeout)) as prev_iotype
            from t
           ) t
      where prev_iotype is null or prev_iotype <> iotype
     ) t
where iotype = 0;

然后,您必须将其作为class AttentionLogger(keras.callbacks.Callback): def __init__(self, val_data, logsdir): super(AttentionLogger, self).__init__() self.logsdir = logsdir # where the event files will be written self.validation_data = val_data # validation data generator self.writer = tf.summary.FileWriter(self.logsdir) # creating the summary writer @tfmpl.figure_tensor def attention_matplotlib(self, gen_images): ''' Creates a matplotlib figure and writes it to tensorboard using tf-matplotlib gen_images: The image tensor of shape (batchsize,width,height,channels) you want to write to tensorboard ''' r, c = 5,5 # want to write 25 images as a 5x5 matplotlib subplot in TBD (tensorboard) figs = tfmpl.create_figures(1, figsize=(15,15)) cnt = 0 for idx, f in enumerate(figs): for i in range(r): for j in range(c): ax = f.add_subplot(r,c,cnt+1) ax.set_yticklabels([]) ax.set_xticklabels([]) ax.imshow(gen_images[cnt]) # writes the image at index cnt to the 5x5 grid cnt+=1 f.tight_layout() return figs def on_train_begin(self, logs=None): # when the training begins (run only once) image_summary = [] # creating a list of summaries needed (can be scalar, images, histograms etc) for index in range(len(self.model.output)): # self.model is accessible within callback img_sum = tf.summary.image('img{}'.format(index), self.attention_matplotlib(self.model.output[index])) image_summary.append(img_sum) self.total_summary = tf.summary.merge(image_summary) def on_epoch_end(self, epoch, logs = None): # at the end of each epoch run this logs = logs or {} x,y = next(self.validation_data) # get data from the generator # get the backend session and sun the merged summary with appropriate feed_dict sess_run_summary = K.get_session().run(self.total_summary, feed_dict = {self.model.input: x['encoder_input']}) self.writer.add_summary(sess_run_summary, global_step =epoch) #finally write the summary! 的参数

fit/fit_generator

在我将注意力图(作为热图)显示到张量板的情况下,这是输出。

tensorboard

答案 6 :(得分:0)

class customModelCheckpoint(Callback):
def __init__(self, log_dir='../logs/', feed_inputs_display=None):
      super(customModelCheckpoint, self).__init__()
      self.seen = 0
      self.feed_inputs_display = feed_inputs_display
      self.writer = tf.summary.FileWriter(log_dir)


def custom_set_feed_input_to_display(self, feed_inputs_display):
      self.feed_inputs_display = feed_inputs_display


# A callback has access to its associated model through the class property self.model.
def on_batch_end(self, batch, logs = None):
      logs = logs or {}
      self.seen += 1
      if self.seen % 8 == 0: # every 200 iterations or batches, plot the costumed images using TensorBorad;
          summary_str = []
          feature = self.feed_inputs_display[0][0]
          disp_gt = self.feed_inputs_display[0][1]
          disp_pred = self.model.predict_on_batch(feature)

          summary_str.append(tf.summary.image('disp_input/{}'.format(self.seen), feature, max_outputs=4))
          summary_str.append(tf.summary.image('disp_gt/{}'.format(self.seen), disp_gt, max_outputs=4))
          summary_str.append(tf.summary.image('disp_pred/{}'.format(self.seen), disp_pred, max_outputs=4))

          summary_st = tf.summary.merge(summary_str)
          summary_s = K.get_session().run(summary_st)
          self.writer.add_summary(summary_s, global_step=self.seen)
          self.writer.flush()
然后您可以调用自定义回调并将图像写入张量板
callback_mc = customModelCheckpoint(log_dir='../logs/',  feed_inputs_display=[(a, b)])
callback_tb = TensorBoard(log_dir='../logs/', histogram_freq=0, write_graph=True, write_images=True)
callback = []
def data_gen(fr1, fr2):
while True:
    hdr_arr = []
    ldr_arr = []
    for i in range(args['batch_size']):
        try:
            ldr = pickle.load(fr2)           
            hdr = pickle.load(fr1)               
        except EOFError:
            fr1 = open(args['data_h_hdr'], 'rb')
            fr2 = open(args['data_h_ldr'], 'rb')
        hdr_arr.append(hdr)
        ldr_arr.append(ldr)
    hdr_h = np.array(hdr_arr)
    ldr_h = np.array(ldr_arr)
    gen = aug.flow(hdr_h, ldr_h, batch_size=args['batch_size'])
    out = gen.next()
    a = out[0]
    b = out[1]
    callback_mc.custom_set_feed_input_to_display(feed_inputs_display=[(a, b)])
    yield [a, b]

callback.append(callback_tb)
callback.append(callback_mc)
H = model.fit_generator(data_gen(fr1, fr2), steps_per_epoch=100,   epochs=args['epoch'], callbacks=callback)

picture

答案 7 :(得分:0)

这里和其他地方的现有答案是一个很好的起点,但是我发现他们需要进行一些调整才能使用Tensorflow 2.x和keras flow_from_directory *。这就是我想出的。

我的目的是验证数据增强过程,因此我写入张量板的图像是增强训练数据。这并不是OP想要的。他们将不得不将on_batch_end更改为on_epoch_end并访问模型输出(我没有研究过,但是我敢肯定有可能。)

类似于Fabio Perez's answer with the astronaut,您将可以通过拖动橙色滑块来滚动浏览各个纪元,从而显示已写入张量板的每个图像的增强副本。仔细训练经过多个时期的大型数据集。由于此例程会在每个时期保存每千个图像的副本,因此您可能会得到一个很大的tfevents文件。

回调函数,另存为tensorflow_image_callback.py

import tensorflow as tf
import math

class TensorBoardImage(tf.keras.callbacks.Callback):

    def __init__(self, logdir, train, validation=None):
        super(TensorBoardImage, self).__init__()
        self.logdir = logdir
        self.train = train
        self.validation = validation
        self.file_writer = tf.summary.create_file_writer(logdir)

    def on_batch_end(self, batch, logs):
        images_or_labels = 0 #0=images, 1=labels
        imgs = self.train[batch][images_or_labels]

        #calculate epoch
        n_batches_per_epoch = self.train.samples / self.train.batch_size
        epoch = math.floor(self.train.total_batches_seen / n_batches_per_epoch)

        #since the training data is shuffled each epoch, we need to use the index_array to find something which uniquely 
        #identifies the image and is constant throughout training
        first_index_in_batch = batch * self.train.batch_size
        last_index_in_batch = first_index_in_batch + self.train.batch_size
        last_index_in_batch = min(last_index_in_batch, len(self.train.index_array))
        img_indices = self.train.index_array[first_index_in_batch : last_index_in_batch]

        #convert float to uint8, shift range to 0-255
        imgs -= tf.reduce_min(imgs)
        imgs *= 255 / tf.reduce_max(imgs)
        imgs = tf.cast(imgs, tf.uint8)

        with self.file_writer.as_default():
            for ix,img in enumerate(imgs):
                img_tensor = tf.expand_dims(img, 0) #tf.summary needs a 4D tensor
                #only post 1 out of every 1000 images to tensorboard
                if (img_indices[ix] % 1000) == 0:
                    #instead of img_filename, I could just use str(img_indices[ix]) as a unique identifier
                    #but this way makes it easier to find the unaugmented image
                    img_filename = self.train.filenames[img_indices[ix]]
                    tf.summary.image(img_filename, img_tensor, step=epoch)

将其与您的培训相结合:

train_augmentation = keras.preprocessing.image.ImageDataGenerator(rotation_range=20,
                                                                    shear_range=10,
                                                                    zoom_range=0.2,
                                                                    width_shift_range=0.2,
                                                                    height_shift_range=0.2,
                                                                    brightness_range=[0.8, 1.2],
                                                                    horizontal_flip=False,
                                                                    vertical_flip=False
                                                                    )
train_data_generator = train_augmentation.flow_from_directory(directory='/some/path/train/',
                                                                class_mode='categorical',
                                                                batch_size=batch_size,
                                                                shuffle=True
                                                                )

valid_augmentation = keras.preprocessing.image.ImageDataGenerator()
valid_data_generator = valid_augmentation.flow_from_directory(directory='/some/path/valid/',
                                                                class_mode='categorical',
                                                                batch_size=batch_size,
                                                                shuffle=False
                                                                )
tensorboard_log_dir = '/some/path'
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=tensorboard_log_dir, update_freq='batch')
tensorboard_image_callback = tensorflow_image_callback.TensorBoardImage(logdir=tensorboard_log_dir, train=train_data_generator, validation=valid_data_generator)

model.fit(x=train_data_generator,
        epochs=n_epochs,
        validation_data=valid_data_generator, 
        validation_freq=1,
        callbacks=[
                    tensorboard_callback,
                    tensorboard_image_callback
                    ])

*我后来意识到flow_from_directory有一个选项save_to_dir,足以满足我的目的。只需添加该选项就简单得多,但是使用这样的回调具有在Tensorboard中显示图像的附加功能,可以在其中比较同一图像的多个版本,并可以自定义保存图像的数量。 save_to_dir保存每个扩展图像的副本,这会迅速增加很多空间。