我试图在一定的月份范围内研究海表温度(SST)与热带气旋活动的相关性。我使用的数据来自Hadley Centre(采用NetCDF格式),使用hadsstR包中的get_anual_ssts()
函数。
get_annual_ssts <- function(hadsst_raster, years = 1969:2011) {
mean_rasts <-
apply(matrix(years), 1, function(x) {
yearIDx <- which(chron::years(hadsst_raster@z$Date) == x)
subset_x <- raster::subset(hadsst_raster, yearIDx)
means <- raster::calc(subset_x, mean, na.rm = TRUE)
names(means) <- as.character(x)
return(means)
})
mean_brick <- raster::brick(mean_rasts)
mean_brick <- raster::setZ(mean_brick, as.Date(paste0(years, '-01-01')), 'Date')
return(mean_brick)
}
我需要的是有一个额外的参数,允许我按月飓风活动过滤而不是计算全年平均SST。
例如,对于西南太平洋,我应该能够致电get_annual_ssts(hadsst_raster, 12:04, 1966:2007)
,即12月至4月是飓风活动的月份。设定包含两个不同年份的月份范围至关重要(可能会说明初始月份和范围长度以简化mean_brick
的结构,从而节省初始年份的平均值?)。
查看chron
的文档,似乎无法分配mm-yy或类似的子集。 实现这一目标的最佳方式是什么?
以下是输入栅格数据(hadsst_raster
)的外观,供参考:
class : RasterBrick
dimensions : 180, 360, 64800, 1766 (nrow, ncol, ncell, nlayers)
resolution : 1, 1 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84
data source : ~/Downloads/Hadley/HadISST_sst.nc
names : X1870.01.16, X1870.02.14, X1870.03.16, X1870.04.15, X1870.05.16, X1870.06.16, X1870.07.16, X1870.08.16, X1870.09.16, X1870.10.16, X1870.11.16, X1870.12.16, X1871.01.16, X1871.02.15, X1871.03.16, ...
Date : 1870-01-16, 2017-02-16 (min, max)
varname : sst
输出(get_annual_ssts(hadsst_raster, 1966:2007)
)的外观如何:
class : RasterBrick
dimensions : 180, 360, 64800, 42 (nrow, ncol, ncell, nlayers)
resolution : 1, 1 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84
data source : in memory
names : X1966, X1967, X1968, X1969, X1970, X1971, X1972, X1973, X1974, X1975, X1976, X1977, X1978, X1979, X1980, ...
min values : -916.8167, -916.8167, -916.8167, -916.8167, -916.8167, -916.8167, -916.8167, -916.8167, -916.8167, -916.8167, -916.8167, -916.8167, -916.8167, -1000.0000, -1000.0000, ...
max values : 29.94996, 29.66276, 29.70941, 30.22522, 29.61913, 29.43723, 29.65050, 29.73929, 29.59117, 29.48381, 29.36425, 29.72932, 29.70908, 29.84216, 29.84868, ...
Date : 1966-01-01, 2007-01-01 (min, max)
答案 0 :(得分:1)
好的,我有点儿的东西。也许你用它来修改你的功能:
## Generate your layer names (used for indexing later)
nms <- expand.grid(paste0('X',1969:2011),c("01","02","03","04","05","06","07","08","09","10","11","12"),'16')
nms <- apply(nms,1,function(x) paste0(x,collapse = '.'))
nms <- sort(nms)
## Generating fake raster brick
r <- raster()
r[] <- runif(ncell(r))
rst <- lapply(1:length(nms),function(x) r)
rst <- do.call(brick,rst)
names(rst) <- nms
现在您可以使用图层名称对砖进行索引。穿过飓风季节(从1年级开始):
for (ix in 1970:2011){
sel <- rst[[c(grep(paste0(ix-1,'.12'),nms),sapply(paste0(0,1:4),function(x) grep(paste0(ix,'.',x),nms)))]]
break ## in case you don't want to go through all iterations
}
对于第一次迭代,我得到了这个输出:
> sel
class : RasterStack
dimensions : 180, 360, 64800, 5 (nrow, ncol, ncell, nlayers)
resolution : 1, 1 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
names : X1969.12.16, X1970.01.16, X1970.02.16, X1970.03.16, X1970.04.16
min values : 5.988637e-06, 5.988637e-06, 5.988637e-06, 5.988637e-06, 5.988637e-06
max values : 0.9999771, 0.9999771, 0.9999771, 0.9999771, 0.9999771
如果有帮助,请告诉我。
所以可能是一个更适用的例子:
(该函数假设输入块x
的图层名称格式为Xyyyy.mm.dd
)
hadSSTmean <- function(x, years, first.range = 11:12, second.range = 1:4){
nms <- names(x)
mts <- c("01","02","03","04","05","06","07","08","09","10","11","12")
xMeans <- vector(length = length(years)-1,mode='list')
for (ix in 2:length(years){
xMeans[[ix-1]] <- mean(x[[c(sapply(first.range,function(x) grep(paste0(years[ix-1],'.',mts[x]),nms)),sapply(1:4,function(x) grep(paste0(years[ix],'.',mts[x]),nms)))]])
}
return(do.call(brick,xMeans))
# you could also return the list instead of a single brick
}