multiprocessing.Pool Scaling

时间:2017-05-04 08:20:54

标签: python python-3.x multiprocessing

我想知道为什么我的CPU负载如此之低,即使我没有获得高处理率:

import time
from multiprocessing import Pool
import numpy as np
from skimage.transform import AffineTransform, SimilarityTransform, warp

center_shift = 256 / 2
tf_center = SimilarityTransform(translation=-center_shift)
tf_uncenter = SimilarityTransform(translation=center_shift)


def sample_gen_random_i():
    for i in range(10000000000000):
        x = np.random.rand(256, 256, 4)
        y = [0]

        yield x, y


def augment(sample):
    x, y = sample
    rotation = 2 * np.pi * np.random.random_sample()
    translation = 5 * np.random.random_sample(), 5 * np.random.random_sample()
    scale_factor = np.random.random_sample() * 0.2 + 0.9
    scale = scale_factor, scale_factor

    tf_augment = AffineTransform(scale=scale, rotation=rotation, translation=translation)
    tf = tf_center + tf_augment + tf_uncenter

    warped_x = warp(x, tf)

    return warped_x, y


def augment_parallel_sample_gen(samples):
    p = Pool(4)

    for sample in p.imap_unordered(augment, samples, chunksize=10):
        yield sample

    p.close()
    p.join()


def augment_sample_gen(samples):
    for sample in samples:
        yield augment(sample)



# This is slow and the single cpu core has 100% load
print('Single Thread --> Slow')
samples = sample_gen_random_i()
augmented = augment_sample_gen(samples)

start = time.time()
for i, sample in enumerate(augmented):
    print(str(i) + '|' + str(i / (time.time() - start))[:6] + ' samples / second', end='\r')
    if i >= 2000:
        print(str(i) + '|' + str(i / (time.time() - start))[:6] + ' samples / second')
        break

# This is slow and there is only light load on the cpu cores
print('Multithreaded --> Slow')
samples = sample_gen_random_i()
augmented = augment_parallel_sample_gen(samples)

start = time.time()
for i, sample in enumerate(augmented):
    print(str(i) + '|' + str(i / (time.time() - start))[:6] + ' samples / second', end='\r')
    if i >= 2000:
        print(str(i) + '|' + str(i / (time.time() - start))[:6] + ' samples / second')
        break

我正在使用multiprocessing.Pool的imap,但我认为有一些开销。当没有使用扩充和没有多处理时,我可以达到大约500个样本/秒,没有多处理就增加了150个样本,并且像扩充和多处理一样170,所以我怀疑我的方法一定有问题。 代码应该是可执行的并且不言自明! :)

1 个答案:

答案 0 :(得分:0)

问题似乎是

return warped_x, y

将图像传递给已处理并将整个转换后的图像传回主进程似乎是瓶颈。如果我只回馈第一个像素

return x[0, 0, 0], y

并将样本创建移动到子进程

def augment(y):
    x = np.random.rand(256, 256, 4)
    rotation = 2 * np.pi * np.random.random_sample()
    ...

速度将随着核心数量的增加而几乎呈线性增长......

也许线程比流程(?)

更好